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This is a general and exact study of multiple Hamiltonian walks (HAW) filling 
the two-dimensional (2D) Manhattan lattice. We generalize the original exact 
solution for a single HAW by Kasteleyn to a system of multiple closed walks, 
aimed at modeling a polymer melt. In 2D, two basic nonequivalent topological 
situations are distinguished. (1) the Hamiltonian loops are all rooted and con- 
tractible to a point: adjacent one to another, and, on a torus, homotopic to zero. 
(2) the loops can encircle one another and, on a torus, can wind around it. For 
case 1, the grand canonical partition function and multiple correlation functions 
are calculated exactly as those of multiple rooted spanning trees or of a massive 
2D free field, critical at zero mass (zero fugacity). The conformally invariant 
continuum limit on a Manhattan torus is studied in detail. The melt entropy is 
calculated exactly. We also consider the relevant effect of free boundary con- 
ditions. The number of single HAWs on Manhattan lattices with other 
perimeter shapes (rectangular, Kagom6, triangular, and arbitrary) is studied 
and related to the spectral theory of the Dirichlet Laplacian. This allows the 
calculation of exact shape-dependent configuration exponents y. An exact sur- 
face critical exponent is obtained. For case 2, nested and winding Hamiltonian 
circuits are allowed. An exact equivalence to the critical Q-state Potts model 
exists, where Qm is the walk fugacity. The Hamiltonian system is then always 
critical (for Q ~< 4). The exact critical exponents, in infinite numbers, are univer- 
sal and identical to those of the O(n = Q~/z) model in its low-temperature phase, 
i.e. are those of dense polymers. The exact critical partition functions on the 
torus are given from conformal invariance theory. These models 1 and 2 yield 
the two first exactly solved models of polymer melts. 
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walks; partition functions; correlations; free field; conformal invariance; polymer 
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0. I N T R O D U C T I O N  

Like the Hamiltonian in mechanics, Hamiltonian circuits take their name 
from William Hamilton, who solved the first "Hamil tonian" problem, 
namely the "tour around the world" problem on a dodecahedronfl A 
Hamiltonian circuit is a closed path that visits once and only once all the 
sites of a given graph, following the edges of the graph. (2) A Hamiltonian 
walk (HAW) is a similar open path. Note that the usual meaning of HAW 
understands that there is only a single walk filling the lattice. As we shall 
see, it is, however, natural to generalize to multiple HAWs, filling the 
lattice. There is no general solution for listing HAWs on any graph. (2) A 
related problem is that of Eulerian circuits, (2,3) first solved by Euler for the 
well-known problem of K6nigsberg's seven bridges. (3) An Eulerian circuit 
must visit once and only once all edges of a given graph or lattice. 

In 1963, Kasteleyn (4,5) gave a solution for counting single HAWs on 
any oriented lattice graph fqc, which is the "covering" graph (2,4) of a closed 
oriented graph Iz41 f#. Single HAWs on c~, are related to Euler walks on cg 
and to spanning trees (4'6) of f# (a spanning tree is a subgraph of N without 
loops that covers all the sites of N). Enumerating spanning trees on an 
(oriented) graph ~ is made by a determinant formula. (7,8) Applying this to 
the M x N periodic Manhattan lattice JC/, which is a 2D square lattice with 

2 HamiltonCll found the closed paths visiting all 20 towns only once and following the edges of 
a dodecahedron; see ref. 2, p. 179. 
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Fig. 1. A torus with a 4• 12 Manhattan oriented lattice drawn on it, and a single 
Hamiltonian circuiL This circuit is necessarily contractible to a point. 
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horizontal and vertical alternating orientations (Fig. 1) and is a covering 
graph, Kasteleyn ~4) gave the number of single HAWs: 

~2 N/2( 2nk  . 22nl'~ 
NH,~ = 2MN/2 +1 I~  sin2 ~ + s m  ~ )  

k = l  l=1  

Note that this product (0.1) is also identically, in a compact notation, 

NH.1 = 8 d e t ' ( - A )  (0.2) 

where A is the (discrete) Laplacian in a periodic box M/2 x N/2, the prime 
eliminating the zero mode. Kasteleyn actually gave a direct explanation of 
(0.2), which counts spanning trees on another unoriented square lattice 
whose mesh is twice that of d/d. The asymptotic expression of (0.1) is (4'9) 

NH, l ~ e G M N / ~  (0.3) 

giving the exact entropy per site G/n, where G is Catalan's constant 

1 1 
G =  1 --~5+~-~+ ' "  (0.4) 

This exact entropy has played an important role in condensed polymer 
physicslm 19) and in the theory of mixing, where very few reliable results 
are available. Concerning exact results on the HAW on J l ,  one should 
note that Barber {9) performed a more complete asymptotic analysis of 
(0.1), and that Malakis ~176 considered successive coverings of J /  and 
calculated their entropy. 

The purpose of this paper is to give a thorough and somewhat 
pedagogical description of the statistical mechanics of HAWs on the 2D 
Manhattan lattice, including numerous exact results: partition functions, 
multiple correlation functions, entropy, and discussion of the effect of the 
topology and of boundary conditions. Before describing the progress made, 
let us first make precise the relation of (Manhattan) HAWs to polymer 
physics. HAWs are an extreme case of dense polymers,  ~2~22) which are self- 
avoiding walks (SAW) filling a finite fraction of the lattice. Dense polymers 
form a new critical phase, different from the usual dilute one. In 2D, the 
infinite set of their exact exponents is now known {2w22) from the Coulomb 
gas method. ~23'24) On the Manhat tan lattice the HAWs respect two 
stringent constraints: they fill all the sites and follow oriented arrays of lat- 
tice atoms, hence the question arose ~25) of their universality. The critical 
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exponents of two-dimensional Manhattan HAWs were addressed in ref. 25 
and shown to be those of the critical 2D Q-state Potts model in the Q --* 0 
limit, or, equivalently, of the O(n) model for n ~ 0 in its critical low-tem- 
perature phase. The latter model describes precisely dense polymers, (2~ 
and this shows (25) that the Hamiltonian and Manhattan constraints are 
both irrelevant in the infrared critical limit. This indicates that studies of 
HAWs on the Manhattan lattice can give access to much more universal 
properties of polymer melts than previously imagined. 

In summary, the exact results known for HAWs on the Manhattan 
lattice are the exact number of single HAWs on a torus (4'9'1~ and, quite 
recently, the infinite set of exact critical exponents/TM 

We now describe the approach used in this work and summarize the 
content of this paper: 

We work first with periodic boundary conditions, i.e., on the 2D 
Manhattan torus rill (Fig. 1). Later, we consider free boundary conditions 
and the effect of the shape of the domain which is relevant for a dense 
system. The essential idea is to consider not only a single HAW, but a set 
of multiple HAWs filling J/g. They are described here by a grand ensemble 
with a fugacity associated with the number of walks. This provides a model 
of a polymer melt. On J{, a single HAW is nearly closed, (4) so we actually 
consider multiple Hamiltonian circuits. Then two nonequivalent 
topological situations are studied: 

A. The loops are rooted, adjacent to one another and, on the torus, 
contractible to a point. They simulate a close packing of polymer loops. 

B. The (now unrooted) loops can encircle one another by being 
nested in one another, and on the torus they can wind around the latter. 
Hence, loops noncontractible to a point are allowed. 

The reasons for distinguishing A and B are rather mathematical and 
we use different methods to solve the two cases. 

The "adjacent" case A is exactly transformed in 2D into a multiple 
(rooted) spanning tree problem (generalizing the second method by 
Kasteleyn(4)). Then we show that the generating functions of multiple span- 
ning trees are exactly calculable as massive free-field partition functions. 

The generating function for multiple HAWs 

~H= ~ N . ,~  (0.5) 
K~>I 

where NH, K is the number of distinct configurations of K-HAWs on J/g, 
reads (e.g., on the torus) 

"~H = 2 det(--A + m  2) (0.6) 
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This is the direct generalization of Kasteleyn's relation (0.2). It also 
exemplifies the physical Hamiltonian system to which there corresponds 
the addition of a mass term to the free field theory: m2/2 is the contractible 
HAW fugacity. We give the explicit formula for the multiple correlation 
functions of the "contractible" Hamiltonian melt. They are determinants of 
the free field two-point correlation function. Now, with a free field being 
critical at m 2 = 0 (zero fugacity), a finite number of adjacent HAWs filling 
an (infinite) Manhattan lattice form a 2D critical system, i.e., a free field 
theory, with logarithmic divergences. This is studied in detail in this article. 

On the other hand, the unrooted and "nested" system B can be trans- 
formed exactly (25~ into a critical Q-state Potts-like model, where now Q1/2 
is the HAW fugacity. Hence it remains critical in the finite interval (26~ 
Q e [0, 4]. In addition to the critical exponents, we give here in particular 
the exact continuum limit of the partition function on the torus. 

In the zero-fugacity limit (m 2 --, 0, Q ~ 0) both systems (A and B) are 
critical and describe different topological aspects of a same 2D critical 
system: a few HAWs filling Jr In 2D conformal invariance, (27) its central 
charge is, then c = -2 .  

In the present work, the study of the Manhattan HAW properties is 
made in connection with the techniques of critical phenomena in 2D: exact 
solutions by determinants, 2D free fields, conformal invariance and 
modular invariance on the torus, (28) spectral theory of the Laplacian, Potts 
and O(n) models, Coulomb gas methods. 

The organization of the paper is as follows. 
Part A is devoted to adjacent HAWs. 
In Section 1, Kasteleyn's remark is generalized to multiple adjacent 

rooted circuits, which are shown to be in one-to-one relation to multiple 
rooted spanning trees. 

In Section 2, we derive some general theorems concerning rooted 
spanning trees on unoriented connected graphs. Closed expressions of the 
multiple tree generating function and correlation functions are given in 
terms of the graph connection matrix/8) 

Section 3 is devoted to the application of these results to adjacent 
HAWs on the Manhattan torus and to their free field representation. The 
first terms of (0.5) are calculated. Their continuum limit is worked out in 
detail. Close to criticality (a finite number of walks filling Jg) the finite-size 
scaling limit of ~H (0.5) is calculated. It has a compact modular invariant 
form, (28) which yields the large-lattice limit of NH.IC for any K, generalizing 
Barber's asymptotics. The relation to modular invariance on a torus (28) and 
conformal invariance in two dimensions is discussed. The second case is 
when the number of HAWs becomes infinite with the lattice size, which we 
call the Hamiltonian melt. Its exact entropy is given. The exact multiple 
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correlation functions are given, with a detailed study of their critical and 
melt limits. 

In Section 4, the effect of boundary conditions relevant for a dense 
system is considered. On a Manhattan rectangle with free edges, the exact 
number of single HAWs is calculated as well as its asymptotic form. It 
exhibits a new perimeter term, and, more surprisingly, a new exponent 7. 

In Section 5, we further elaborate on HAWs with free boundary con- 
ditions, relating them to Neumann conditions for the Laplacian, and finally 
to Dirichlet ones. This leads into Section 6, where other geometries for 
Manhattan oriented lattices are considered, such as the Kagom6 and 
triangular ones. The spectral theory of the Dirichlet Laplacian on domains 
with arbitrary shapes is used to derive directly the asymptotic number of 
single HAWs for any geometry, and in particular its critical exponent ?, 
which is shape-dependent. 

Section 7 concludes with a special application of the Manhattan 
HAW. We compare two Manhattan even-even and odd-odd rectangles 
M x N and (M + 1) x (N + 1) and calculate their respective numbers NH,1, 
which do not have the same analytic form. An exact surface critical 
exponent is derived. Quite interestingly, it is just the surface exponent for 
dense polymers obtained elsewhere (22'2s) by Coulomb gas methods, giving a 
direct check of the universality. 

This is precisely the subject of Part B, treating unrooted and nested 
multiple walks, possibly not contractible on the JC{ torus. Section8 
describes briefly the new aspects of this system, which corresponds exactly 
to a critical Potts model. (25) An infinite set of exact critical exponents is 
thus obtained. The relation is made to the subcritical O(n) model and the 
universality discussed. The exact modular invariant partition function, in 
the continuum limit, of multiple nested HAWs on the torus is given in Sec- 
tion 9 from results of conformal invariance and Coulomb gas methods. 
Finally, in Section 10 we compare Manhattan HAWs to dense polymers in 
2D. Some exact results for HAWs are used to conjecture new ones for 
dense polymer networks. 

A. A D J A C E N T  A N D  C O N T R A C T I B L E  MULT IPLE  W A L K S  

1. EQUIVALENCE OF H A M I L T O N I A N  W A L K S  TO 
S P A N N I N G  TREES 

1.1. Single Hami l tonian W a l k  

Let us consider a periodic M x N Manhattan lattice J /  (Fig. 2). The 
periodic boundary conditions and the alternating orientation rule require 
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open walk on the 4 x 6 Manhattan lattice. It necessarily ends at one 
lattice spacing of its origin. 

M and N to be even. As remarked by Kasteleyn, any Hamiltonian walk on 
~ / ( F i g .  2) is "almost closed": the special Manhattan orientation forces the 
walk to end at one lattice spacing from its origin. Indeed, suppose that the 
walk starts at 0 (Fig. 3). Let A and B be the two neighboring sites from 
which one can go to 0 in accordance to the Manhattan orientation. I f  A 
and B are not end points of the Hamiltonian walk, the latter must pass 
through sites A and B at some time and leave them. But not being allowed 
to return to 0 by hypothesis, it must leave A following out-line a and B by 
out-line b (Fig. 3). These two lines are confluent at site C (Fig. 3) and this 
contradicts the self-avoidance constraint. Hence, either A or B is an end 
point. The walk can be closed simply by adding the oriented bond joining 
the end point A or B to 0. 

A o 
11 

a, I < C B 

x + 
"4/ 

M/ 

< 

, , v  

Fig. 3. A Hamiltonian walk starting at 0 must end at A or B. Otherwise it would have to 
follow lines a and b and cross itself at c. 
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So, to each oriented open walk corresponds exactly one closed walk, 
where the origin is distinguished. We shall also distinguish closed walks 
(which are rooted) from circuits, where the origin is not considered. 

On a torus, the problem of counting open Manhattan Hamiltonian 
walks thus reduces to that of closed walks. This will not be true in the case 
of free boundary conditions, where real open walks will be possible, as 
treated later in this work. 

Now, following Kasteleyn, <4~ we notice that a Hamiltonian circuit of 
J/{ is either clockwise or counterclockwise oriented. It is useful to consider 
among all the set of square plaquettes building J [  the two peculiar subsets 
where the plaquettes are clockwise or counterclockwise oriented (Fig. 4). 
These plaquettes are like vortices (or antivortices) and a Hamiltonian 
circuit encircles the clockwise or counterclockwise set, depending upon 
whether it is itself clockwise or counterclockwise. (Figs. 4a, 4b). The centers 
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Fig. 4. The periodic 4 • 6 Manhattan lattice J /  and the two unoriented square lattices Le A 
(solid dots) and --LeB (open dots), the sites of which are the centers of clockwise and counter- 
clockwise plaquettes of ~/1. A clockwise (resp. counterclockwise) Hamiltonian circuit on ~/  
encircles in a one-to-one correspondence a spanning tree on (a) LeA [(b) resp. on LeB]. 
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of clockwise (resp. counterclockwise) plaquettes build an unoriented square 
lattice LeA (resp. Lee), whose mesh is twice that of J /  (Fig. 4). Then each 
clockwise Hamiltonian circuit on Jr encircles in a one-to-one correspon- 
dence a spanning tree on LeA (Fig. 4a), counterclockwise Hamiltonian 
circuits corresponding to spanning trees of the other sublattice LeB 
(Fig. 4b). 

We shall distinguish here the number NH,~ of single Hamiltonian open 
walks, which is the same as that of closed walks with the origin specified, 
from the number N o of circuits without origin. We have H,1 

NH, 1 = J V ' N ~  (1.1) 

where 

Jr = M N  1.2) 

is the number of sites of Jr as well as the length of a Hamiltonian circuit 
on .~'. 

Let similarity NT.1 denote the number of rooted spanning trees on LeA 
(or Lee) and N o the number of unrooted spanning trees, These tree 
numbers are related by 

Nr, I = ~ s N ~  (1.3) 

where JV s is the number of sites of lattice LeA (or Les), given in terms of the 
number of sites of J/g by 

JV = 4JV s (1.4) 

According to the preceding discussion, one has the relation between 
Hamiltonian circuits on J / a n d  unrooted spanning trees on Le A or Lee 

N~ = 2N~ ( 1.5 ) 

where the factor 2 accounts for the two possible orientations of the walks, 
i.e., for the two lattices LeA and LeB. One has a similar relation between 
Hamiltonian closed walks with specified origin on Jr  rooted spanning 
trees on Le,~ (or Les), 

NH, 1 = 2-4Nr.1 (1.6) 

where the factor 4 comes from the number of possible origins on the walk 
per root on the spanning tree. 
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1.2. Mul t ip le  Walks (Adjacent  and Contract ib le )  

We can generalize the preceding results by considering now K (K~> l) 
Hamiltonian ("nearly closed" or closed) walks on s/g, which completely fill 
the lattice. Since we want to preserve the equivalence to spanning 
(multiple) trees, we impose two conditions (Fig. 5): 

1. The walks are adjacent, i.e., none encircles another circuit. 

2. On the Manhat tan  torus, some walks could wind around the torus. 
We forbid this by requiring that all walks are contractible to a 
point, i.e., homotopic to zero. 

The general situation where circuits can encircle others and where they 
can wind around the torus is also very interesting and will be considered 
later (Part  B). Note  also that since the circuits are homotopic to zero (con- 
dition 2), condition 1 is now equivalent to requiring that all circuits have 
the same orientation (either clockwise or counterclockwise). This will 
decide whether all K circuits are in correspondence to a multiple spanning 
tree on &a A or SB. We now define on sO/the restricted partition function or 
K-correlator 

NH(xl  ,..., xK) = # K-adjacent contractible walks 

rooted at {xl ..... xK}, x i E J g  (1.7) 

where the xi are K points on ~ '  which the ith walk passes through (Fig. 6). 
It will be natural to introduce similar quantities for the K-spanning 

trees on either lattice 5CA or •B. 

Fig. 5. Depiction of K= 2 HAWs adjacent and contractible to a point on the torus. 
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Fig. 6. Two sets of K-Hamiltonian walks, for K= 2, contributing to NH(x l, x2). They corre- 
spond to two sets of 2-spanning trees either on ~A or 5~ contributing, respectively, to 
NA(al, a2) and NSr(bl, b2). 

Def in i t ion .  A K-spanning tree T on lattice graph 5O is a tree that  
covers all sites of 5O and has K connected components  T~,..., T K. 

Then the part i t ion function of  K rooted spanning trees is defined on 
lattice 5O as 

N T ( a l  ..... ax)---- # K - s p a n n i n g  trees {TI,..., Tg} 

with respective roots  a~ ..... aK, al ..... aK ~ 5 ~ (1.8) 

where the al are K distinct points  on 5(' ( =  5OA or 5OB)- 
Now,  the Hamil tonian  walk and tree part i t ion functions (1.7) and 

(1.8) are related to each other  by the following rules. We first note that  the 
walks contr ibut ing to (1.7) split into two classes, where the K walks are all 
clockwise or all counterclockwise oriented. When  clockwise (resp., counter-  
clockwise) they encircle a spanning tree on 5OA (resp. 5OB) with K connected 
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components. The roots of the K-spanning tree on ~A (or ~B) are easily 
found by a proximity rule. 

Indeed, we remark that on a Manhattan lattice J/g, we may associate 
in a unique way to any point x a site a(x) on ~A and another site b(x) on 
~ s  (Fig. 7), 

~a(x) E 5s A (1.9) 
x ~b(x) ~ ~ 

where a(x) [resp. b(x)]  is the center of the unique clockwise (resp. counter- 
clockwise) plaquette from which x is a corner. 

Now, to the set {xi} in (1.7) we associate two sets {ai} and {bi} by 
(1.9), which are roots in (1.8) of K-trees on ~a  or ~ .  Then the basic 
relation between walks and trees is 

NH(xl,..., XK) = Nr ..... aK) + N~.(b 1,..., bK) (1.10) 

where the two terms correspond to the spanning trees encircled by the 
nonoverlapping sets of clockwise or counterclockwise K-walks on J /  
contributing to (1.7) (Fig. 6). Let us note that if two different xi have the 
same a (or b), then N A (or N~) is automatically zero. 

From the correlations (1.7), (1.8) we now derive other quantities of 
interest. 

1.3. Partial Part i t ion Functions 

For K'-Hamiltonian walks with fixed roots xl,..., XK. on J / ,  immersed 
in K" other walks with arbitrary roots, we have the partition function 

1 
NH(Xl ..... xI~,;K")==-K,, ! ~ NH(Xl,...,Xx,,yl,...,yK,,), K ' + K " = K  

{Yl,--.,YK"} (1.11) 

> 

> 

Fig. 7. The proximity rule. To each x ~  J /  there corresponds exactly one pair of points 
a E 20A, b e 2~ that are the closest centers of clockwise and counterclockwise plaquettes. 
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Similarly, it will be useful to consider K' trees with fixed roots a~,..., aK, in 
the presence of K" other trees without specified roots on 2,A (or 2,8), 

1 
�9 " = - -  ~ N r ( a  1,..., aK, , a ' l , . . . ,a 'w,)  (1.12) N r ( a l  ..... a K , ,  K ) - K " !  . , 

al  ,...,aK,, 

When K ' =  0, K " =  K in definitions (1.1l), (1.12) one obtains, respectively, 
the total number Nu./~ of rooted K-Hamiltonian walks on Jr  N r . , :  of 
rooted K-spanning trees on 5(' (=  2,A or 5~ 

NH, K -- Nu(~5; K) 
(1.13) 

N r ,  K = - -  N r ( ( 2 5 ;  K )  

where ~ is the empty set. 
From the fundamental relation (1.10), one deduces relations between 

the partial partition functions (1.11), (1.12): 

N i - t ( x ~ , . . . , X K , ; K " ) = 4 I r " [ N ~ . ( a m  ..... a K , ; K " ) + N ~ ( b l , . . . , b K , ; K " ) ]  (1.14) 

where the factor 4 ~" arises from the fact that each plaquette a E 5(' A (and 
be  2'8) has four corners x on Jr when inverting the mapping (1.9). Hence, 
formally, 

Z = 4'v" Z (1.15) 
{ xl ...... x" } {,,l ...... K" } 

For the total number of rooted walks Nu, K and trees Nr, K we have finally 

N H ,  x = 2-4KNr, K (1.16) 

where the factor 2 comes from the two equal contributions of lattices 2,A 
and 2,8- 

1.4. Grand Canon ica l  Pa r t i t i on  F u n c t i o n s  

We now define the generating function or grand canonical partition 
function of the K-Hamiltonian walks on J/g, 

~ , ( 2 ) =  ~ 2KN,,K (1.17) 
x=l 

The maximum value of K in the sum is obtained when each walk encircles 
an elementary plaquette of Jr and is thus the number of sites of 2,a or s 
~ s =  MN/4. According to (1.16), ~H(2) can be immediately rewritten as 

~H(2) = 2~r(42) (1.18) 
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where ~T is the generating function for rooted K-spanning trees on the 
unoriented lattice 5~A (or Ys) 

JVs 
.~r(m2) = ~ m2KNv.K (1.19) 

K = I  

The notation m 2 for the tree fugacity has been chosen for the following 
reason: as we shall see later, the generating function ~7- may be written as 
the partition function of a free field with mass m on the lattice 5~ A and 5e B. 

Finally, we can also introduce grand canonical partition functions 
with specified roots for Hamiltonian walks 

~H(xl ..... x~c; )~) = ~ 2K'Nn(xl,..., x~; K') (1.20) 
K'~>0 

and for spanning trees on Y ( =  ~ ,  or 5~ 

-~T(al,..., aK;m2) = ~ m2K'NT(al ..... aK;K') (1.21) 
K'>~O 

According to Eq. (1.14), the following identity holds between walks on ~g/ 
and trees on ~A and ~B: 

-~n(xl ..... xK; 2) = ~.~.(a~ ..... aK; 42) + ~ ( b ~  ,..., bK; 42) (1.22) 

which generalizes (1.18). 

2. S O M E  RESULTS ON THE E N U M E R A T I O N  OF TREES 
ON G R A P H S  

In this section we derive some general results on the enumeration of 
trees on general graphs, which will be used in the next sections. These 
results are merely elaborations of classical results, which may be found, for 
instance, in refs. 5-8. We recall them for completeness. 

Let us first fix some notations and definitions. 

D e f i n i t i o n  1. A subgraph S of G is a subset of vertices {ai} and of 
lines {/i} of G such that it forms a graph (that is, if a line l belongs to S, 
vertices. 

D e f i n i t i o n  1. A subgroup S of G is a subset of vertices {ai} and of 
lines {/~} of G such that it forms a graph (that is, if a line l belongs to S, 
the two vertices at the ends of l belong to S). 

Remark. With this definition, a subgraph S is not necessarily con- 
nected, and an isolated vertex may form a subgraph or a connected part of 
a subgraph. 
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D e f i n i t i o n  2. Given a (sub)graph S, we denote, respectively, by 
No(S), N~(S), and No(S) the numbers of vertices, lines, and connected 
parts of S. 

Defini t ion 3. Given a (sub)graph S, the number of internal loops 
N2(S) is defined by the Euler relation: 

N2(S) = Nc(S) - No(S ) + N~(S) (2.1) 

Defini t ion 4. A subgraph S of a graph G is a spanning-K-tree 
of G if 

No(S) = No(G) 

N2(S) = 0 (2.2) 

Nc(S ) = K 

that is, if every vertex of  G belongs to S, S has no internal loops, and S has 
K connected components. 

Def ini t ion  5. Given a graph G, the connection matrix Cc is an 
No(G) x No(G) matrix, where elements Cab are labeled by the vertices of G 
and are defined as follows: 

Cab = - number of lines joining a to b if a C b 

Caa = -- ~ Cab ---- number of lines attached to a by 
b=~a 

one (and only one) extremity if a =  b (2.3) 

With these definitions, the problem of enumerating spanning-K-trees 
of a graph G is related to the properties of the connection matrix Ca by the 
following fundamental theorem. 

T h e o r e m  1. Let G be a graph, A = {al ..... aK} a subset of K dis- 
tinct vertices of G, and Nr(al,..., ax) the number of spanning-K-trees S of G 
such that each vertex ai of A belongs to a different connected component Si 
of S. We have 

NT(al ,..., a~;) = det(Ca/A) (2.4) 

where COlA is the [No(G ) - K] x [No(G) - K] submatrix of C obtained by 
removing all lines and columns labeled by elements of A. 

Proof. The proof is a simple generalization of a classical theorem by 
Kirchhoff (which holds for K =  1). Let us choose an arbitrary orientation 

822/51/3-4-2 
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for each line of G and define the No(G) x NI(G) incidence matrix E, where 
elements Eat are labeled by a vertex a and a line l of G and are defined as 

Eat = q- 1 if line 1 flows toward a 

= - 1  if l ine/f lows outward a (2.5) 

= 0 otherwise 

It is easy to see that C = E  .E t. From the Binet-Cauchy theorem we can 
write det CG/A as a sum over all subsets L of No(G)-  K lines of G, 

det(CG/A) = ~ [det(Ea/A,L)] 2 (2.6) 
L 

EG/A, L is the square matrix obtained from E by keeping only the elements 
of E attached to vertices of G/A and to lines of L. 

By extension, we shall also denote by L the subgraph of G containing 
every vertex of G, but only the lines I in L. One can show that if at least one 
connected component  of L does not contain any vertex of A, then 
det(Ea/A,L) = 0. Thus, the sum in (2.6) is reduced to L such that each con- 
nected component  of L contains at least one vertex of A. Thus, No(L) <~ K, 
since A has K vertices. Since No(L)= No(G) and NI(L)=No(G) -K ,  the 
Euler relation (2.1) gives Nz(L)<~ 0. This implies that N 2 ( L ) =  0 (thus, L is 
a spanning tree) and that each vertex of A must belong to a different con- 
nected component  of L (thus, L is a spanning-K-tree). Then one can show 
that since L is a tree, det(Ea/A,L) = +_1 (the sign depends on the orientation 
of the lines of L). Conversely, every spanning-K-tree contributes to the sum 
in (2.6). Theorem 1 follows. 

- N  o is independent of Remark. In the simplest case K =  1, N r ( a  ) -  r,1 
the chosen vertex a and is simply the number of connected spanning trees 
on G. 

Theorem 1 can be extended in the following way. 

T h e o r e m  2. Let G and A =  {al ..... aK} as in Theorem i. The 
characteristic polynomial of the restricted matrix Ca/A reads 

det(Ca/A + 21 ) = ,.~r(al ..... aK; )~) 

= Z  2K'Nr(al ..... aK; K') (2.7) 
K'  

where Nr(a~ ..... aK; K') is expressed as a sum over spanning-(K+ K')-trees 
S of G such that each vertex ae of A belongs to a different connected 
component  of S, 

K'  

Ur(al,..., aK; K') = ~, I-[ Uo(Si) (2.8) 
S 1 
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where in (2.8) the product runs over the K' connected components of S 
that do not contain any vertex of A, and where No(Si) is the number of 
vertices of each connected component. 

RrooL Expanding the determinant on the lhs of (2.7), we get 

Nr(al ..... ax; K ' )= ~ det(Ca/A ~ 8) (2.9) 
B =  {bl, . . . ,b~,} 

where bl " .  bx, are K' vertices of G/A. Using Theorem 1 and regrouping the 
sum over B into a sum over K +  K' spanning trees, we get (2.8). 

Importont Remark. Theorem 2 is still valid if K =  0 (A is the empty 
set ~ ) .  Then the sum in (2.8) reduces to spanning-K'-trees. The fact that 
the first term Nr((g; 0) vanishes is a consequence of the existence of a zero 
eigenvalue for C, which implies that det C = 0. In that particular case we 
shall denote the term of the expansion by 

det(C G + 21) = ~ PK,2K'= P(2) (2.10) 
K'  

We have from Theorem 2 

P o = 0  

P1 = No(G)" NO = NT.I TA 

(2.11) 

where N~ is the number of (unrooted) connected spanning trees on G. 
The matrix C is equal to minus the combinatoric Laplacian on the 

graph G. It is then natural to express the "correlation function" 
Nv(al,..., ax; 2) in terms of the "propagator," that is, of the inverse of 
(C +,~1). 

Def ini t ion 6. 
the inverse C + 21, 

We define the "massive propagator" matrix G(2) as 

G(2)~b = (C + 21)-~l~b (2.12) 

Theorem 3. For G and A =  {al,...,aK} as in Theorem 1, 
~ T ( a l  ..... aK; 2) defined as in (2.7) and P(2) as in (2.10), we have 

~r(al  ..... aK; 2) = P(2)" det(G(2)[ A) (2.13) 

where G(2)tA is the K x K  matrix obtained by restricting to A the 
propagator matrix G(2). 
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Proof. Let us decompose the matrix (Co + 21) into blocks relative to 
elements of A and elements of G/A, 

(2.14) 

but C =  (CG/A + 41) and inverting (2.14) leads to 

[ (A-BC-1Bt )  -1 _ (A_BC-XBt ) - IBC  1 ] 
G ( 2 ) = [ _ - C  1Bt(A-BC 1Bt)-I C X+C-~Bt(A-BC-~Bt)- IBC a 3 

(2.16) 

Thus, ( A - B C  ~B') -1 is nothing but G(2)IA. 
For the "massless" case 2 = 0, we have to take into account the zero 

mode of C, which causes P(2) to vanish and the propagator G(2) to 
diverge. The projector onto the zero mode will be denoted by Po and has 
matrix elements 

Hence 

1 
(P0)ab -- (2.17) 

No(G) 

Then in the limit 2 ~ 0 the propagator matrix G(2) defined by (2.12) has 
the expansion 

G(2) = ~  Po + (C + Po) -~ - Po + O(4) (2.18) 

= (C + Po)-I  _ P0 (2.19) 

is the finite part of G(2) and is infrared finite. We have the following 
theorem, which generalizes a classical result by Kirchhoff for K =  2. 

T h e o r e m  4. With the notations of Theorem 3, 

Nr(al  ..... ax) -- N Or,l det(K_ 1)x(K 1 I(D) (2.20) 

where D is the (K-- 1 ) x (K-- 1) matrix whose elements are 

D~=  ff.~,~- l~aiaK-- I~,a~j + ~aK-x (2.21) 

We have 

P(2) = det(C6 + 21) = det(C), det(A - BC-~B t) (2.15) 
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The det(D) does not depend on the labeling of the vertices in A, and N o is T,1 

the number of unrooted, connected spanning trees on G. 

Proof .  Starting from (2.13), we can write 

detx• = {det<~ I)x(K_I)]-D(,~)]} X G ( 2 ) ~  (2.22) 

with the matrix D defined as 

Do(2) = G a i a j ( J ~  ) - Gw~K(~).GaK~j()~)/GaxaK(~. ) (2.23) 

now as 2 + 0, D(2) is finite and goes to the matrix D defined by (2.21) 
from (2.18), while 

1 
G(2)aK~ ~ 2No(G) (2.24) 

and from (2.11) 

P ( 2 )  ~ 2No( G ) �9 N~ (2.25) 

This ends the proof. 

3. A P P L I C A T I O N  TO T H E  M A N H A T T A N  T O R U S  

3.1. General  Formulas  

In the case of the Manhattan torus, we now apply the general results 
of Section 2 for trees on a general graph to the particular case where the 
graph G is the M/2 x N/2 periodic square lattice ~ = s (or Lfs). We 
denote by 

M = M/2, N = N/2, No (Lf) = ~C s = M N  ( 3.1 ) 

the dimensions of lattice L~, with a total number of sites Jffs- The Jf" s x JU s 
matric C of (2.3) is then (minus) the combinatoric Laplacian on 5r Its 
eigenvalues on this periodic lattice are 

2~k 2M 
2 k = 4 - 2  c o s - - ~ - - 2  cos--~- 

{ 2 z &  2~_ffl) 
k = \ ~ - ,  N } ,  O ~ k ~ M - 1 ,  O <~ l <~ N - 1  

(3.2) 

The zero mode corresponds to k = 0. 
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Let us now recall the essential results of the preceding section, now 
applied to the periodic lattice 5('. 

3.1.1. P a r t i t i o n  F u n c t i o n .  The exact form of the generating 
function for rooted K-spanning trees is [Eq. (2.10)] 

~r(m2) = ~ m2X~'r~,r,K--det(C+m21)~ (3.3) 
K = I  

Note that the first term, i.e., the number of singly connected, rooted trees 
NT.~ , reads 

NT, I = det' C~  = ~/~s det C~e/{a) (3.4) 

where the prime denotes the product of nonzero eigenvalues, while 
det C~o/~a~ is the minor of any point {a} in C, and equals the number of 
unrooted 1-spanning trees on 50 Esee (2.11)] 

N~ = det C ~/~a~ (3.5) 

3.1.2.  COrre la t ion  Funct ions .  The grand canonical multipoint 
correlation function 

s ..... aK; m 2) = ~ m2K'NT(al,..., aK; K')  
K' >~O 

of a set A = {al,..., aa} rooting K trees, and immersed into K' ~> 0 other 
rooted trees, reads in 5 ~ [-Eq. (2.7)] 

dT(al ,..., aK; m 2 )  = det[(C + m21)~/A ] (3.6) 

It also can be expressed as the correlation function [-Eq. (2.13)] 

~T(al ..... ax;  m 2) 
~r(rn 2) = detK• K[_Gaiaj(m2)] 

in terms of the massive propagator 

Ga,a:(m 2) = (C 2 -1 + m 1).~oj (3.7) 

The zero-mass limit will be of particular interest later. The number of 
K-spanning trees rooted at {a~ ..... aK} is, on square lattice 50, 

NT(al  ..... aK) = -~r(al ..... aK; m 2 = 0 )  = det Cze/A (3.8) 
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It also has an expression in terms of the finite part of the propagator at 
zero mass [Eq. (2.20)] 

Nr(al  ..... aK) 
NOT, 1 = det(K l~• ~K_ l)D~,al, i , j = l  ..... K--1  (3.9) 

1 
G;~b= (C+P~ M N  (3.10) 

where (Po)ab = 1/MN is the projector on the zero mode of C. 
The corresponding partition functions and correlation functions for 

Hamiltonian walks on Manhattan dg can now be calculated directly in 
terms of those of spanning trees of 5 ~ by using the relations established in 
Section 1, Eqs. (1.10), (1.14), (1.18), and (1.22). 

Before proceeding further on the elaboration of results, let us make 
some basic remarks. We see that all formulas (3.3)-(3.10) are free field for- 
mulas. Hence, the problem of (adjacent and rooted) Hamiltonian walks on 
Manhattan oriented lattice dd has been entirely reduced to a free field 
theory on the unoriented square lattice Y.  The square mass m 2 of the field 
just plays the role of the grand canonical fugacity 2 associated with the 
number of Hamiltonian walks, since from (1.18) one has 

m 2 ----- 42 

This identification opens different directions for exploiting the results. First, 
for fixed value M, N of the lattice size, expanding all free field quantities in 
powers of m 2, o n e  can evaluate on the discrete lattice all moments, i.e., 
the various numbers and correlation functions of HAWs, with some 
constraints (see Sections 3.2 and 3.3). 

Of particula r interest is the massless case, m 2 = 0. One knows indeed 
that a free field with zero mass is, in the continuum limit, a particular exam- 
ple of a critical system. On the Manhattan lattice or on ~o, we shall reach 
the continuum limit by taking the infinite-volume limit M, N--,  oo (since 
the lattice spacing has been fixed to one). The critical zero-mass limit will 
thus correspond to a finite set of HAWs filling the infinite lattice all. 

We discuss the critical continuum limit in Section 3.4, through its link 
to conformal invariance theory on the two-dimensional torus, This leads to 
a new way of seeing Manhattan Hamiltonian walks, which appear as a 
physical realization of a two-dimensional critical free field theory. 

Away from the critical point, at m2-7 6 0, one can also consider the con- 
tinuum limit of the theory. The finite-size scaling limit is then particularly 
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interesting, where the mass m 2 goes to zero, while M, N ~ ~ ,  keeping 
m(MN) 1/2 finite. We consider in detail this FSS limit in Section 3.5. From 
this limit all critical enumeration properties of finite sets of HAWs can be 
derived. 

In Section 3.6 we calculate the critical correlation functions of trees or 
Hamiltonian walks on the continuum torus. Finally, another limit, m 2 
fixed, M, N ~ Go, i.e., the massive infinite-volume limit, is also interesting. 
It corresponds physically to an infinite set of walks filling the infinite 
lattice, and is considered in Section 3.7. 

3.2. M o m e n t s  of Part i t ion Functions 

Let us evaluate the exact numbers of K-spanning trees NT, K and 
Hamiltonian walks NH, K on the discrete lattices LZ and Jg, respectively. 
Due to (3.2) and (3.3), the tree-generating function ~v reads explicitly, on 
the square periodic lattice, 

~T(m2)  -~- H 4 + m 2 - 2 cos - ~ -  - 2 cos 
O<~k<~M--1 
O<~l<~N--1 

-= [ I  (2k + rn2) 
k 

(3.11) 

Expanding in powers of m 2 yields the first moments Nr, K, 

Nr,1 = F[' 2k (3.12) 
k 

Nr'2-~ '1 (3.13) 
Nr, l -  k 2k 

Nr'3 = 1 F(~' 1"]2- ~' ~-~] (3.14) 
NT,1 2 [_\ k )~k] k 

where the prime means that the zero mode k = 0  is removed. The 
corresponding numbers of Hamiltonian walks on ~ /  are obtained from 
Eq. (1.16) and read 

NI-I, 1 = 8  U 4 -  2 cos -~ - - -  2 cos (3.15) 
O<~k <~ M - - 1  
O<.l<~N--I  
(k,/) r (0,0) 
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2rck 2rcl'~ -1 
N"'2 = 4  ~ 4 -  2 c o s - - -  2 cos--~-) (3.16) 
NH, 1 M O<~k<~M 1 

O <~ k <~ N 1 
(k, t) ~ (0, O) 

NH'3=8 52' 4-- 2 COS -~---- 2 COS - -  
N H ,  1 k , l  

- 8  ~ '  4 - 2 c o s - ~ - - 2 c o s ~ - )  J (3.17) 

Of course, higher numbers NH,K can be calculated as well. These results 
generalize the celebrated exact value (3.15), (0.1) by Kasteleyn. 

The large-lattice limit M, N ~ o% or M, N ~  o% with M/N = M / N  
finite, can be seen either as the thermodynamic limit or the continuum 
limit, since the lattice mesh is fixed. The asymptotic value of NH,1 is 
known./9) We have evaluated directly the asymptotic expressions of 
(3.12)-(3.17) by a different method (Appendix A). They will also be 
obtained later by the evaluation of generating function (3.11) in the finite- 
size continuum limit. These asymptotics are 

(3.18) 

where 

( ~/2  

G= d x l n [ s i n x +  (1 + sin2 x) 1/2] 
~0 

1 1 
. . .  (3.18a) 

is Catalan's constant (4) and where ~ is the modular ratio of the torus (27,2s) 

M M 
N N and q = e  2TcM/N (3.19) 

and 

P(q)=  f i  (1 -qn)  (3.20a) 

One uses also Dedekind's function 

q(q) = p(q)qX/24 (3.20b) 
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For the number of Hamiltonian walks on the M x N Manhattan lattice, 
this gives 

NH, I =- ]-I •k "~ 2eGMN/~MNq4(q)~ (3.21) 
k~0 

This is just another form of Barber's result, (9) which can be transformed 
into the present one by using the properties of elliptic Jacobi 0-functions. 
For the next moment we find (Appendix A) 

~ ' - - - ~  l n M N + 2 1 n  e ~ -41n [P (q )  q~/24~/4] (3.22) 
k 2k-  4n 

(7 is the Euler constant). 
Hence, the number of two-component Hamiltonian walks (3.16) reads 

asymptotically (MN = 4MN) 

MN ( e : '  '] 
NH,2 "~ NH, I ~ In MN 2rc2rl4(q)~j (3.23 ) 

The presence of a logarithmic growing factor, besides a term MN, is 
characteristic of the enumeration of rooted walks or trees. This will appear 
clearly below in Part B, where two-component Walks with no roots will be 
enumerated. (25) Finally, the evaluation of the third moment gives, after a 
rather long algebra (Appendix A), 

, ~  (MN~2I 1 ~(3) 1 1 q n 
- ~ \ 2 n }  ~ ( 2 ~ ( ) 2 + ~ + 2 n - ~ . ~ , n 3 t - q "  

1 q~ ] 
+ Y ~ n  ~ _-- n~>l (1 qn)2 (3.24) 

From Eqs. (3.16), (3.17), (3.23), and (3.24) we finally find for the 
asymptotic number of rooted three-component Hamiltonian walks: 

Un, l-2\--4-~-~J ln2 MNzn2~/4(q)~ 22x4~ - 2n----~ 

4 1 qn 1 qn 1 
2 ~ n ~ l n 3 1 _ q n  4,~>1~ n 2 ( l _ q n ) 2 + . . .  (3.25) 

By construction, the problem considered here is symmetric under the 
exchange of M and N (or M and N). It is actually possible to check that 
expressions (3.18) and (3.21)-(3.25) are invariant in this exchange. For 
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(3.21), (3.23) this is easily seen, since they involve only the Dedekind com- 
bination t/a(q)~, which is known to be invariant. (28'29) For the result (3.25) 
this is less obvious, but true. This simple invariance is a particular case of 
the more general modular invariance (28) on a torus, which is valid for any 
critical system. The latter also holds true here, since we are actually dealing 
with a critical 2D free field theory. The expressions above are indeed fully 
modular invariant. Their complex analytic form can be obtained by letting q 
become complex (28) and reestablishing complex conjugates in the above 
real expressions. This will be studied in more detail later (Sections 3.4~3.6). 

3.3. Correlat ion Functions 

Let us first make explicit the general structure of multipoint 
correlation functions of order K. According to Eqs. (3.6) and (3.8), they 
can be obtained for the minor of order K of C on the periodic square 
lattice. Equivalently, they are computed in terms of the propagator G on 
the discrete lattice 5 ~ , (3.7) and (3.9). As we have seen, the form of the 
correlation functions depends upon whether m2= 0 or m2r  0. 

Let us first consider the massless critical c a s e :  m 2 =  0. Then, the first 
correlation functions (3.9), (3.10) read for trees on 50 

K = 2 :  Ur(a, b )=2N~ (3.26) 

K = 3 :  N r ( a , b , c ) = N  o d e t [ D ~  Db.]  
r. 1 Da b ObbJ (3.27) 

with 

Daa = 2E~,aa- ~ac'] 

Dbb = 2[~a~-- ff'bc3 

On a periodic lattice Gaa is a constant independent of a. It is then 
convenient to introduce a shifted propagator (with a change of sign) 

G'b = ~;aa -- ~ab (3.28) 

Then one finds 

N r ( a , b , c ) - N  ~ d e t [  2G'ac G'ac + G~c-  G'ab] 

t i t t t t r 2  - N  o {2G~cGbc + 2GabGa~ + 2G.bGbc - G'~ - Ga - G;2c} 
- -  T ,  1 

(3.29) 
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which can be represented diagrammatically as in the Mayer expansion for 
real gases 

N T ( a ' b ' c ) = 2 ( g / N N + - / " - - + - _  % " - ) - ( /  , + o  ~ , + , < ~ ) ( 3 . 3 0 )  
N O - _ 

T, 1 

Higher order correlation functions can be calculated from (3.9), and have 
the same typical cluster structure. 

For evaluating the correlation functions of the pure ()~=0) 
Hamiltonian walks on a Manhattan lattice, one has simply to use the 
correspondence (1.6), (1.9), (1.10). One finds, to first order from (3.26), 
(3.29), 

N H ( X  ' __ 1 0 t Y) - g N H ,  1 [ G a ( x ) a ( y ) " J v  G b ( x ) b ( y ) ' ]  (3.26bis) 

NH(X, y , z ) _ I  o - -  ~ N H ,  i 

' G '  - ~ - '  - - G '  q x ~det V , 2G:(x)a<:) a(x)a{>.> ":,<x) a( : )  "(Y>:(:)/ 
( kG.<x) a<y) - G'~(x)a(~)- G'<y)~<~) 2Ga<y ),,(~) j 

+id.  with b(x), b(y) ,  b(z)} (3.29bis) 

Let us recall that NH(x, y,z,...) is the total number of possible K- 
Hamiltonian circuits filling the lattice ~ such that one circuit passes 
through x, a second one through y, etc. (Fig. 4), x, y, z .... being sites of Jr 

On the square periodic lattice LP the finite part ~ ,  (3.10), of the 
massless propagator reads, from the eigenvectors and eigenvalues (3.2) 
of C, 

~ a b  = 2 
O<~k~M--  I 
O~I<~N--1 
( k d ) ~ ( o , o )  

exp [2rti(k/M)(xa - xb) + 2rci(l/N)( Ya - Yb) ] 

4 - 2 cos(2~zk/M) - 2 cos(2~zl/N) 
(3.31) 

where a = (x~, y , )  and b = (xb, Yb) are the positions of points a and b on 
the discrete lattice s The zero mode is simply subtracted out. 

Accordingly, the other propagator G', (3.28), reads formally 

, 1 
Gab = ~2 5-- { 1 -- exp[ik �9 (a - b)] } (3.32) 

k ~ O  "~k 

with k- - (2~k/M,  27d/N). 
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Let us finally consider the massive case. Equations (3.7) giving the 
multipoint correlation function are now simpler. The massive propagator 
G ~ j  reads explicitly on 5 ~ 

e x p [ i k ( a  - b ) ]  

G,b = ~ 4 + m 2 -- 2 cos (2~k /M)  - 2 cos(2rcl/N) (3.33) 
O<~k<~M--1 
O<~l<~N--1 

The presence of a mass term makes the theory noncritical. At large 
distances, Gab will have an exponential decay with a correlation length 
~rn -1. Hence, the correlations between trees or Hamiltonian circuits will 
be screened by the presence of a thermodynamic number of other trees or 
walks. Let us write the grand canonical correlation functions (1.20) of 
Hamiltonian circuits of ~#, using the correspondence (1.18), (1.22) to trees. 
The result (3.7) for trees then gives immediately for HAWs on J{ 

~.~H(XI,..., XK" ~ ~) 1 
~H(2) = ~ [detK• KGo(xi) a(xj)(m 2) + detK, ~Gb(~,) b<xj)(m2)] (3.34) 

with m 2= 42, and where the points { a ( x i )  , i =  1,..., K} of 5r A and {b(xi), 
i =  1 ..... K} of Lf~ are obtained by the lattice correspondence (1.9) (Figs. 6 
and 7). 

3.4. Critical Point and Conformal Properties 

Here we study in more detail the general relation of the Manhattan 
Hamiltonian walk problem in the critical continuum limit to conformal 
invariance theory. We shall indicate the way HAWs are described within 
this formalism, by focusing on modular invariance on the torus and on 
central charge. In particular, we shall see the interpretation of Kasteleyn- 
Barber result (3.21) in terms of standard two-dimensional critical field 
theory. 

In the preceding sections we saw that the generating functions ~H of 
(1.17) and ~ r  of (1.19) read formally 

~H(2) = 2-~r(42) = 2 det( - A  + m2)lm2=4~. (3.35) 

since - C  = A is the combinatoric Laplacian. Consider now a continuum 
free field theory, whose partition function on the torus T is defined by the 
functional integral 

z,m,= eriodicE   expE 1  336, 
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where ~o is periodic along the torus. This Gaussian integral reads formally 

Z ( m )  ~ [det( - A + m2)]s  ~/2 (3.37) 

Therefore the generating function of HAWs reads 

2H(m2/4) ~ g - 2 ( m )  (3.38) 

In the limit m ~ 0 the free field theory is the simplest example of a critical 
theory. This describes a finite set of Hamiltonian walks filling an infinite 
Manhattan lattice. Hence the properties of such Hamiltonian walks are 
those of a (two-dimensional) critical system and are conformally 
invariant. (27) 

The critical limit allows us to escape from the simple rectangular 
periodic lattice and to consider the continuum torus parametrized (28-3~ by 
its two complex periods col, ~2 with a modular ratio v, 

"[ = ( / ) 2 / ( . 0 1 ,  q = e 2r~i~ (3.39) 

Then the continuum, massless, free-field partition function on the torus, 
which has been much considered recently, (29'3~ reads (in ~-function 
regularization (29, 30) 

Z(m)=-- i  Z~ + . . . ,  m ~ 0  (3.40) 
m 

with 

Z 1 ~ "  [de t ' ( -A) ] -~ /2  = 
d l /2 ( Im z) 1/2 rl(q) rl((t) 

(3.41) 

where d is the area of the torus 

d = area(T) = I~112 Im (3.42) 

In the zero-mass limit we have, by definition of-~H in (1.17), 

~u(m2/4) = ~mZUH,1 + . . .  

Hence we find, by comparing (3.38) and (3.40), 

NR, 1 = 4 Z 1 2  = 4~r Im z q2(q) q2(q) (3.43) 

This formula is the' modular invariant form (28) of the result (3.21), which 



Multiple Hamiltonian Walks on Manhattan Lattice 355 

we obtained by a direct asymptotic evaluation of (3.15). Indeed, the 
periodic rectangular lattice 5e corresponds to 

(D 1 = N ,  ~o~ = i M  

r = i M / N ,  q = e 2~M/N (3.44) 

~ '  = M N  = MN/4 

and Eqs. (3.21) and (3.43) coincide, except for the leading nonuniversal 
(dominant) term e x p [ ( G / ~ ) M N ] .  This is natural, since the field-theoretic 
approach (3.36) requires that one renormalizes continuum partition 
functions. Terms like e x p [ ( G / ~ ) M N ]  are the exponentials of terms that 
diverge as powers of the cutoff. Those terms are set to zero in analytic 
regularization, such as the so-called ~-function regularization. (29 31~ It 
amounts here to simply setting G = 0  for Catalan's constant. We shall 
return to this comparison of lattice and ~-function regularizations in the 
next section, when we evaluate the complete generating function ~T(m2). 

Let us finally consider the universal central charge (27) of the critical 
Hamiltonian system. This central charge (27) c governs in particular the 
universal finite-size scaling behavior of a critical system on an i n f in i t e  s tr ip .  

This geometry corresponds to the limit q--*0 on the torus. Then the 
partition function of a critical system behaves as 

Z ~ (q~)  c/24 (q  --+ O) 

For a free field [-Eq. (3.41)] one has the well-known result c = 1. Then the 
identities (3.38), (3.40), (3.41) show that for Hamiltonian walks the central 
charge is (20'21) 

c = - 2  (3.45) 

In Part B of this article, we shall obtain a further confirmation of this 
value, from an entirely different approach with the Potts model. Note that 
c = - 2  is also the universal central charge of dense polymers, ~2~ which 
already signals' the universality properties of HAWs on the Manhattan 
lattice.~25) 

3.5. Finite-Size Effect, Continuum Limit Close to Criticality 

3.5.1. Finite-Size Scaling Limit. We would like to have infor- 
mation on all the moments NH, K of ~n(m2/4) in the large-lattice limit. 
These configuration numbers correspond to finite numbers K>~ 1 of walks 
occupying the infinite lattice. (The size of the walks grows with M N ,  not 



356 Duplantier and David 

their number.) For  a gas of walks with fugacity m 2, the correlation length 
between walks is ~ = m -1 (see Section 3.3) and gives the scale of the dis- 
tance between points belonging to different walks. For  a finite number of 
walks, this distance, or correlation length, is proportional to the System 
size (MN) 1/2. Hence, we are explicitly dealing with the finite-size scaling 
limit (FSS) where MN--.  oo, m 2 4 0 ,  together with keeping the product 
mZMN finite. We shall obtain in this limit the exact generating function 
.~H(m2/4) of the Hamiltonian walks on the continuum torus. 

To perform the calculation, we introduce the FSS variable 

I~1 N 
t = m ~ = m ~ (3.46) 

and we want to evaluate for t fixed, in the infinite-lattice limit, the tree- 
generating function 

l n ~ T ( m 2 ) = l n d e t ( - A  + m 2 ) l x =  ~ l n (4 -2Cm, -2c , ,+m 2) 
O<~m'<~M--1  

O<~n<~N 1 

with 
2rim' 2nn 

C m ,  ~ -  COS M ' cn cos N 

(3.47) 

To simplify the notations, we note the logarithm of the determinant on the 
torus 

In D = In d e t ( - A  + m2)lT (3.48) 

3.5.2. Series Representation. We first use the Fourier represen- 
tation 

l n [ 2 ( c h t ' - c o s 0 ) ] = t ' -  ~ e-I~lc - -  eik~ (3.49) 
~ z *  Ikl 

We now set 

2 ch tn = 4 + m 2 - -  2 cos 0n (t,  > 0) 

O, = 2=n/N 

(3.50) 

and rewrite (3.47) as 

lnD= 2 (tn-- 
O < ~ r n ' ~ M - - 1  
O<~n<~N--1 

e2"~ik"'/M e hkl,./ikl ) 
k ~ Z *  
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We perform the s u m m a t i o n  on m o m e n t a  m '  with 

2 d 2~zikm'/M = M 2 ~k,k 'M 

O<~m'<~M 1 k 'EZ 

and find 

357 

e - k'Mtnx~ 

l n D =  ~ M t n - 2  

= ~ [Mt ,+21n(1- -e -Mt")]  (3.51) 
O<~n<~N 1 

3 .5 .3 .  F S S  C a l c u l a t i o n .  So we are led to evaluate the 
asymptot ics  of a single sum, paramet r ized  by (3.50). To  per form a finite- 
size scaling expansion a round  m = 0, we rewrite Eq. (3.50) in terms of the 
FSS variable t, (3.46), 

ch tn = 2 + - -  ~ - -  cos 0, ,  0~ = 2~nN (3.52) 

The zero-mass  value t(~ ~ of t~ is obta ined  f rom the equat ion  

ch t(~ ~ = 2 - cos On (3.53) 

For  N large and t fixed, we can expand,  according to Eq. (3.52), t ,  a round  
t(~ 

t, = t(~ ~ + 6t, + ... (3.54) 

6t.  = sh 7. for n : ~ 0  (3.55) 

and find 

For  n = 0, we have simply 

2~ 
to = ~ -  t + --- (3.56) 

So we rewrite the first sum in (3.51) as 

S -  ~ t ,  
O<~n~N-- i 

=to+ Z t~ ~ + Z 6 t ,+ Z [ t , - t ~  ~  (3.57) 
n~O nv/-O n•O 

822/51/3-4-3 
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It is worth  noting that  instead of the Brillouin zone n e [0, N -  1], the sym- 
metric one n ~ [ - - N / 2 ,  N/2] is more  convenient  near the cont inuum limit, 
since the singularities will then stay near  the origin. 

Now, the two first sums in Eq. (3.57) will be evaluated separately. The 
th i rd  one has a finite con t inuum limit. Indeed for t fixed, N--* 0% and n 
fixed, we find from (3.52) 

2r~ 2 tz)u2 t=--*~- (n + (3.58a) 

27~ 
t~ ~ --+ ~ -  n (3.58b) 

2r~ t 2 
6t#-~-~ 2---n (3.58c) 

Hence, the cont inuum limit of the last sum of Eq. (3.57) involves the 
convergent  series 

[ t=-- t (=~ ~ ( n 2 + t 2 ) t / Z - n - ~ n  (3.59) 
l < < . n < ~ N - - 1  n = l  

1. For  evaluating Zn ,co) we use the Eu le r -MacLaur in  formula t n , 

2 
l ~ n < ~ N - - 1  

fo ~ 1 f (n )  = f (n )  dn --~ I f ( 0 ) +  f ( N ) ]  

+ ~ ( _ 1 ) , _  1 02, ,~>1 ( 2 n ) !  i f ( 2 .  1)(N)__f(Zn-1)(O) ] (3.60) 

where the B2n a r e  Bernoulli numbers,  B 2 = 1/6, 9 4 = - 1 / 3 0  ..... Fo r  t(= ~ we 
have 

ch t(O) = 2 - cos 0 

27~n 
0 =--R-e [0, 2~3 

sin 0 
t' ( O ) - ch~tvt  "'--------7' t '(0 + ) = - t ' ( 2 g -  ) = 1 

and we obtain 

Z 
l < ~ n < ~ N - - 1  

f ~  dO 1 2~ 
tt~ t(O)-~--~+--~--~[t'(2g ) -  t ' ( 0+ ) ]  + .-- 
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or 

4G 1 2re 
E t~ ~  + 

I<~.<<.N--I  TC 6 N 

where G is Catalan's constant 

(3.61) 

= ! f'~ dO t(O) = fo/~ 4 Jo dx ln[sin x + (1 + sin 2 

1 1 1 
= 1 - ~-~ + ~ - ~ - ~  + -.. 

x)'/2 ] 

(3.62) 

2. For evaluating finally Zn~o 6tn in (3.57), we have to subtract from 
it its dominant part near the origin, which diverges in the continuum limit. 
So we set 

~" (sh t~ ~ -1 = $1 + $2 
l <~n<~N/2 

and thus, from (3.55), 

$ 1 = , = 1  s--ht~ ~ ~ = -  l n - - + . . , 2 ~  

S2= }~n 2~ 
n = l  

3t~ ~ ~ -~  t 2 In Ne e 
l <<.n<~N-- I 

Finally, it remains to evaluate in (3.51) the sum 

(3.63) 

S ' =  ~ 2 l n ( 1 - e  Me,) (3.64a) 
O<~n<~N 1 

This is easily done, since the continuum limit (3.58a) yields a convergent 
sum. Hence 

. . . .  "N (n2 + t2)I/2 (3.64b) 

where the sum over n e Z comes from the two extremities of the Brillouin 
zone. 

Collecting our results (3.56), (3.57), (3.59), (3.61), (3.63), and (3.64), 
we find the finite-size scaling limit of the massive free field determinant 
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with 

In d e t ( - 3  + m2)lx --- -N t - f ( t ) - -~+t21n  Ne 7 

+ 2  In 1 - e x p  - 2 ~ - ~ ( n  +t2) ~/2 + - - .  
n =  - - o c  

(3.65) 

'2 1 f( t)  = 2n + - - -  2(n 2 + t2) ~/2 (3.66) 
n = l  /'/ 

and t = mN/2n. 
This result is reminiscent of that found by Ferdinand and Fisher (32) for 

the lsing partition function on a torus. These authors used a different 
asymptotic method. This is not surprising, since close to criticality the Ising 
model is equivalent to a massive free fermion theory, which in turn is 
expressed in terms of bosonic degrees of freedom, with special boundary 
conditions. ( 3 2 ,  30  ) 

3.5.4. M o d u l a r  F o r m  a n d  ~ - R o g u l a r i z a t i o n .  It is interesting 
to rewrite this continuum partition function in a modular form. Indeed, by 
construction it is invariant under the exchange of M and N, and this is a 
nontrivial property of the result (3.65). In the continuum limit, one can 
also use the torus parametrization (3.39) with geodesics e)~, co2. Using the 
identities (3.44), we obtain d e t ( - A  +m2)x in the form 

det(-A +m2)lT=exp (4-G d -  2rc lm ~ { ~ - t  + f( t)  

x l-I {1-exp[-2~(n2+ta)V2Im~]} 2 (3.67) 
n ~ Z  

where r is pure imaginary. A similar result on the torus has been recently 
obtained (33) by the different ~-regularization method. (31) It reads 

det( - A + m2)l ~-rcg 

=exp  - -2~ Im~  ~ - - t + - ~  d2 (1 - )~ )  ~ (n2+2t)3/2 

+t21n[4r~e-7(~-) l /2]})  

x 1-[ {1-exp[2~inRer-21r(n2+t2)I/2Im~]} 2 (3.68) 
n f f Z  
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valid for any complex modular ratio T = ( . 0 2 / 0 )  1 . It is not difficult to see that 

~- d 2 ( 1 - 2 )  - f ( t )  (3.69) 1 ( n2 + J't) 3/2 

where f(t) is the function in (3.66). Hence, comparing (3.67) and (3.68), we 
are able to relate directly the lattice and ~-regularized partition functions 

det( - zl + mZ)ltatti . . . .  g=expI4--~G~c+~ln2(2nlmr)t2]det(--A+m2)lC-reg 

=exp d + m Z d ~ - ~ l n  2 d e t ( - A  + m2)l~_reg 

The first term is characteristic of the ultraviolet properties of the square 
lattice and yields Kasteleyn's result. It is of course unattainable by the 
l-method. Next, the appearance of a mass term difference m 2 d  between the 
two regularizations reflects the need for an ultraviolet renormalization of 
the "specific heat," i.e., the second derivative of In Z in (3.37) with respect 
to m. The mass term m 2 d  is indeed associated with the logarithmic term 
m 2 d  in zr which thus has a different scale in the two regularizations. 

The final, most general modular form of our lattice-regularized tree 
partition function ~T(m2), (3.47), is finally given in the continuum limit by 

in ~ T ( m  2) = In det( - A  + m2)[T 

=4G d - - 2 n l m r [  

+ ~ 2 In{ 1 - exp[2nin Re ~ -  2n(n 2 + t2) 1/2 Im T] } (3.70) 
n ~ Z  

where C is the constant 

and t=ml0)ll/2n. 

C=____~e-~ _ _  
,/2 

(3.71) 

3 . 5 . 5 .  Sma l l -Mass  L imi t  in FSS. As already discussed, the 
series expansion in powers of t of the finite-size scaling expression of 
~r(m2), (3.70), yields the number of K-trees NT, K or of Hamiltonian walks 
Nn, x in the continuum limit or infinite-lattice limit for any finite value of 
K. Straightforward but lengthy algebra yields the series 
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m2)l _4G x in d e t ( - A  + - s ~ -  +21nP(q) P(gl)+lnx2t 2 T 7C 

+ ~--~ x2t 2 -- xt 2 ln[P(q)  P(q) C] 

1 
1 x4t4 xt4 ((3) 

- 2  5 �9 4----~ 

---~ Xt 4 qn n3 ~- C.C. 
n 1 1 - 

[ ] -1--x2t44 ~ (1-qn)Zn2 t-c.c. + O ( t  6) 
n>~l 

where 
x - 2~ Im z, xt 2 = m2d/2g 

Use of the formal expansion 

ln de t ( -  A + m2) = ln m2 + ~ l n 2 k +  
kv~O p>~l 

(3.72) 

~-I)P-~m2p ~ (2k) -p (3.73) 
P k~O 

allows to identify the first moments (3.18), (3,22), and (3.24). QED. This 
checks the exactness of the general formula (3.70). From this, the 
Hamiltonian walk numbers NH,~ of (3.21), NH,  2 of (3.23) and Nn,3 of 
(3.25) are recovered. With patience, any tree number Nr,~ or HAW num- 
ber NH, K can then be obtained in the large-lattice limit from the expansion 
(3.70). 

3.5.6. Large-Mass Limit in FSS. It is finally interesting to con- 
sider the large-fugacity limit of ~H or ~ r  where more and more walks start 
to fill the lattice. This corresponds to the large-t expansion of In D of (3.70) 
in finite-size scaling. We first need the large-t expansion of function f ( t )  
[(3.66), (3.69)]. After some calculations involving .the Euler-MacLaurin 
formula, it is obtained as 

( 1) 1 1 1  
f ( t ) = t  2 l n t - l n 2 + 7 - - ~  + t - ~ + ~ - - d t + - . . ,  t-- .oe (3.74) 

Since the last series in (3.70) gives only exponentially small corrections, we 
find 

In D l v s s = 4 G d - 2 r c I m z t Z l n [ t r c 2 - 3 / 2 e - 1 / z ( ~ - f )  

1 
+ ~ +  . . . ,  t ~ oe (3.75a) 
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Using now definitions (3.42) and (3.46) gives 

l n D l F s s = 4 G d _ l  ( 1 ) ,  7z 2re m2~r ln(m2-5/2e 1/2) _~_ O t ---~ oO 

(3.75b) 

This limit corresponds to a large but still not thermodynamic number of 
walks filling the infinite Manhattan lattice. We shall use it later for 
evaluating the effective Hamiltonian entropy as a function of the walk con- 
centration. As we shall see now, this large-mass limit in FSS is also iden- 
tical to the small-mass limit of the standard thermodynamic limit of In D or 
In ~-H. By standard, we mean that the large-lattice-size limit is taken at fixed 
value of m 2. Hence, the correlation length m- I  remains infinitesimally small 
with respect to the torus size. The mean number ( K )  of Hamiltonian 
walks is then thermodynamically large, and allows the definition of a walk 
(or circuit) concentration ( K ) / d ,  where sr is the area of the torus. We 
shall thus call this limit in brief the Hamiltonian melt, and study it now. 

3.6. Hamiltonian Melt Entropy 

We thus consider the standard thermodynamic limit, which consists in 
taking 

M, N--, 0% m2 fixed (3.76) 

We have to return to the exact representation of ln  D in (3.51) before it was 
evaluated in the FSS limit: 

l n D =  ~. M t .  + 2 In(1 - e  -M'") 
O < ~ n ~ N  1 

2 ch t. = 4 + m 2 - 2 cos 0n, 0n = 27zn/N 

(3.77) 

Taking the straightforward thermodynamic continuum limit gives 

In .~r(m 2) ~ In Do~ = M N  ~ dO t(O) 
Jo 7r 

with 

ch t(O) = 2 + �89 2 - cos 0 

(3.78a) 

(3.78b) 

This limit is exact, up to exponentially small correction terms, coming both 
from the corrections of the Euler-MacLaurin formula for a periodic 
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function like t(O) and from the second term of (3.77). It is then interesting 
to define a grand canonical potential, which is an intensive quantity 

1 1 
.~ -- lim In ~H In Doo (3.79) 

(Note that we choose for convenience to take as a reference area s~' the 
number of sites of the underlying square lattices L~A and ~B and not that of 
the Manhattan torus 4 d . )  

Hence 

m2 
.~= dOt(O), ch t = 2 + -~ - - -  cos 0 (3.80) 

Let us recall that according to Eqs. (1.17) and (1.19) we have 

~ n ( 2 )  = ~ 2KNH, K = 2D(m 2 = 42) 
K~>I 

The grand canonical potential (3.79) is thus of purely entropic nature and 
we define an average concentration for the number of Hamiltonian paths 
per unit of area, 

~ = ( K ) = ) ~  ~3 1 0 l n D ~  
~r ~ " ~  In 2H = rn2 ~m 2 -  --s~r (3.81) 

From (3.80) we find its parametric form 

m 2 fo ~ 1 (3.82) 
c~ =_f.s dO sh t(O----~ 

Since ~r~ resums numbers of configurations, 
canonical) entropy by Legendre-transforming 
chemical potential In 2 

we can define a (grand 
(3.79) with respect to the 

5e = -~ - In 2 0--i-ff~n 2 & 
05e 

cg = 2, In 2 = - - -  (3.83a) 
In 2 ~ 

We can also write 

5e = .~ _ cg ln(m2/4) (3.83b) 

There are now two interesting limits of In Do~ : 

m 2 ---* O, m 2 ---* o(3 
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3.6 .1 .  S m a l l - W a l k - C o n c e n t r a t i o n  Limit .  Due to the existence 
of a critical point at m 2 = 0 ,  in D develops a weak logarithmic singularity 
near the origin. Expanding (3.78) near m2= 0 yields 

E J in Do~ = sJ 4re In m 2 + O(m 2) , ~ 0 (3.84) 

where G is Catalan's constant, i.e., the zero-mass value (3.62). Comparing 
(3.84) for the standard thermodynamic limit at m 2 small and the finite-size 
scaling form in DI vss from (3.75b) for t large, we see that they just coincide. 
These two limits describe the same crossover region where one goes from 
finite-size scaling to standard thermodynamics. This is even clearer if one 
considers the concentration of Hamiltonian walks (3.81). From (3.75b) we 
find 

1 
~ _- _ ~ m 2 in(m22-5) (3.85) 

So, in FSS the regime t 2 ~ m 2 d  being large means ~ s t  = ( K )  large, while 
in standard thermodynamics ( d  -- oo) the limit m 2 ~ 0 means ~a  2 small (a 
is the lattice spacing, here taken equal to l). So these two situations both 
correspond physically to a number of chains becoming thermodynamic, 
but with a very small concentration at the lattice spacing scale. 

Eliminating m 2 between (3.84) and (3.85) yields for the potential ~. the 
expansion at small concentrations 

~ = 4 G + c g  
zr - 1--~ + .- . ,  c g ~ 0  (3.86) 

So we see that the concentration dependence is nonanalytic at <g=0, 
reflecting the existence of the free field critical point. The entropy (3.83b) 
has a slightly different singular behavior 

J = 4G _ ~ In ~ + O(<g) (3.87) 
rc 

valid for <g small. As expected, for a vanishing concentration, the entropy 
(per site of 5r 4G/n just recovers (four times) the Kasteleyn connectivity 
constant (0.3) of the single Hamiltonian walk. 

3.6 .2 .  H i g h - C o n c e n t r a t i o n  Limit .  This limit will drive the 
Hamiltonian system to its saturation, i.e., to the maximum number of 
disconnected paths filling the lattice. It is obtained by expanding (3.78b) 
for m 2 large: 

t(O) = In m 2 + (4 - 2 cos O)m 2 + O(m-4) 
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which gives in (3.78a) 

1 
= ~  In D o  = In m 2 Jr- 4m -2 + O ( m  - 4 )  (3.88a) 

The Hamiltonian concentration (3.81) reads therefore 

cg = 1 - 4 m  2 + O(m-4)  

and finally 
(3.88b) 

(3.89) 

where the concentration is close to its upper maximum value ~rnax = 1. The 
occurrence of this maximum concentration is easy to understand. It occurs 
when all Hamiltonian loops form M N  elementary plaquettes of length 4 on 
rig, encircling either all the d = M N  sites of 5aa or all those of 5~ (Fig. 4). 
Close to this saturation limit, the entropy (3.83b) is easily found from 
(3.88b), 

Y ~ In 4 + (1 - (g)[1 + ln(1 - cg)-~ ] (3.90) 

for cg __, 1 . The limiting entropy In 4 is, as expected, just given by the 
number of choices of the origin of the circuit on each of the plaquettes of 
J l .  This value is reached with a logarithmically diverging slope. 

The full curve giving the entropy 5 e as a function of concentration cg 
for 0 ~< cg ~< 1 has been calculated numerically, using the parametric form 

2.25 

2,0 

1.75 

1.5 

In l, 

1.25 

1,0 I 
0.0 

,Y  

I 
, I , I , I , I , I 

0 .2 0.~ 0.6 0.8 1.0 

Fig. 8. The entropy 5 ~ versus the walk concentration cg in the thermodynamic (melt) limit. 
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(3.80), (3.82), (3.83). This curve (Fig. 8) has a characteristic convex shape 
with a maximum value at (g ~ 0.536591. When the walk concentration 
increases from zero, this maximum value of the entropy results from a com- 
petition between the increase of entropy due to the increase of the number 
of free extremities of walks and an entropic decrease due to the reduction 
of exchanges of positions between the different walks. 

3.7. Continuum Correlation Functions 

One can repeat for all the multipoint correlation functions, whose 
exact forms are given in Section 3.3, the analysis of the continuum limit 
presented above for the generating functions ~-r or ~-H. In particular, one 
would have to distinguish the FSS limit (Section 3.5) from the standard 
thermodynamic limit (Section 3.6). We shall not perform here all the 
intermediate FSS analysis, which is involved. Instead we concentrate on the 
two interesting extreme cases. 

1. The critical limit, where one looks at the correlations of any finite 
set of K walks filling the continuum torus. (Note that the FSS is only the 
resummation of this case.) 

2. The standard thermodynamic limit (infinite-volume limit) with a 
finite concentration of walks in the melt. 

3.7.1. Exact Critical Multipoint Correlation Functions. 
The formal expressions of the Hamiltonian and tree correlation 
functions in the massless case are given in Section 3.3. They are built 
[Eqs. (3.26)-(3.29)] as determinants of the finite part of the free field 
propagators Gab, (3.31), o r  G'ab , (3.32). The Laplacian of G'ab reads, from 
(3.32), 

k 2 
AG'b= ~, ) -~kexp[ ik ' ( a -b ) ]  

k=~O 
(3.91) 

In the continuum limit, we have for the eigenvalues (3.2) 

+ ---- k z (3.92) 

Adding and subtracting the zero-mode contribution to (3.91) and taking 
the continuum limit yields the equation 

A G' = ~'62(a - b) - l 
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Now, the solution of the Poisson equation on the continuum torus 

AG = 6(r) - 1 / d  (3.93) 

has been much studied in the realm of conformal invariance. ~176 We use 
the standard parametrization (3.39) of the geodesics of the torus by 
generators ~ ,  ~o 2 and denote by z the complex affix of a point r = a - b on 
the torus. Setting 

y = e 2niz/c~ q = e 2rr176 Im((.Oz/fO 1) > 0 

we find for G exactly 

1 (ImZ(z/o~l) 
G(r) = ~  \ I--mm ~- 

t- I m p )  1 F(z) 
- ~-~ In F'(0) (3.94) 

with 

F ( z ) =  E (__y)mqm(m+l)/2 
m~Z 

= ( 1 - Y  -1) l~ ( 1 - q n ) ( 1 - y q ' ~ ) ( 1 - y - l q  ") 
n~>l 

2rti 
F ' ( 0 ) =  p3(q), P (q )=  l~ ( l - -q" )  

('01 n>~l 

(3.95) 

and the correlation function if, or G' reads (up to an additive constant) 

G' = d G  (3.96) 

At short distance, Izl/o9~ ~ O, one recovers 

1 
G =  -~---ln Izl + --" 

ZT~ 

G ' =  - - - I n  Izl + --" 
2rt 

(3.97) 

i.e., the standard Coulomb potential in the infinite plane. When considering 
the discrete torus, this limit is valid for distances large with respect to the 
lattice spacing, but small with respect to the torus generators. For inter- 
mediate finite-size distances, the general aspect of the lines of 
equicorrelation is given on Fig. 9. 
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Fig. 9. The critical continuum correlation function G(r) of (3.94) on the torus (courtesy of 
J.M. Luck). The lines are equiprobability lines of finding a second HAW passing through r, 
knowing that a first one passes through the origin 0. One observes the restoration of the radial 
symmetry near the origin, where G(r) ~ --In r, implying a weak logarithmic repulsion of two 
walks. 

In  the con t inuum limit,  we do not  d is t inguish of  course latt ices L\  A and 
5~ Then  the two-  and th ree -po in t  H a m i l t o n i a n  cor re la t ion  funct ions 
(3.26bis) and  (3.29bis) read  

NH(x, y) 1 
N ~ - 2 G ' ( x  - y)  

H, 1 

NH(x, y, z) 
N O 

H, 1 

= 1  det  [ 2 G ' ( x - z  ) G ' ( x  z ) + G ' ( y - z ) - G ' } x - y ) ]  
4 G ' ( x - z )  + G ' ( y - z ) - G ' ( x - y )  2G ( y - z ) I  

The  shor t -d i s tance  (p lana r )  l imit  gives, for instance,  explici t ly 

NH(X, y ) ~  1 
l n l x - -  y[ (3.98) 

N O - 4re H, 1 

NH(X , y, z) ~ 1 m/2 
N O - 4 ( 2 z t ) 2 ( 2 1 n l x - z l l n l z - y l + 2 1 n l x - y l l n l y  - z l  

H, 1 

+ 2 l n l x - y l  l n l x - z l - l n 2 l x -  yl 

- In 2 l Y -  z] - In 2 ] z -  x[)  (3.99) 
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for distances Ix-y[,  Ly-zI, Iz-x[ small with respect to Io91], Ico2[. 
Therefore we see that the correlation functions of a few (adjacent) 
Hamiltonian walks filling the Manhattan lattice are essentially determinants 
of logarithms. 

It is striking to note that this exact logarithmic form agrees with some 
logarithm behavior obtained (3s) in the study of two-dimensional polymer 
melts within the quite different realm of the nonlinear a-model. We believe 
that the present results, while attached to the specific model of Manhattan 
HAWs, embodies some essential physics of the two-dimensional polymer 
melts. We return to this later, when studying the universality properties of 
the model. 

The full continuum exact expression of the critical correlation 
functions on the torus is obtained by plugging (3.94) and (3.95) into the 
above correlators. 

3.7.2.  Exact  Cor re la t ion  Funct ions  in the  M e l t .  The corre- 
lation func,tions in the massive case are given by the determinant formulas 
(3.7), (3.33), (3.34). Now, in the infinite-volume case M, N ~  oo, m 2 fixed, 
the continuum limit of the free field propagator Gab of (3.33) reads simply 

MN exp[ik. ( a -  b)] 
Gab-~ (-~)2 I d2k ~2-q_---k-~ 

and in two dimensions is known to be the Bessel function 

G(r) = ~ Ko(mr) (3.100) 

with r = a - b. 
Hence we find the grand canonical multiple correlation functions for 

Hamiltonian walks (3.34) in the standard thermodynamic limit, i.e., for a 
Hamiltonian melt, 

~n(X 1 ..... xK;m2/4) ( ~ ) K  
~H (m2/4) = ,  , ~  detK• (3.10i) 

This quantity represents the (grand canonical) probability of finding K 
distinct Hamiltonian walks passing through the points xi, i = 1,..., K, in a 
Manhattan Hamiltonian melt. Let us recall that the grand canonical 
partition function 3H(m2/4), (1.17), is given, in the standard infinite-volume 
case, by the parametric equations (3.78) 

~(m2/4 ) = 2 exp I ( d /TZ ) Io dO t( O ) 1 
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where t(O) is given in (3.78b). The melt correlation length is m -1 and is 
related to the walk concentration r by the parametric equation (3.82). 
According to the preceding section, we have for small concentration 
[Eq. (3.85)3 

m2/4 ~- ~zCd/ln(rtcd), m 2 ~ 0 (3.102) 

while the concentration reaches its maximum value cg __, 1 [Eq. (3.88b)3 
when 

m2/4 ~- 1/(1 _cg), m 2 ~  o0 (3.103) 

It is interesting to consider the two limits of the correlation functions 
(3.101), at short and large distances, respectively. 

Critical Short-Distance Behavior. For z small, we have Ko(z ) = 
- In(z /2) [  1 + O(z)]. 

The two-point correlation function therefore reads 

G(r) - -(~r + O(mr)] (3.104) 

This is in full agreement with the critical two-point correlation function 
(3.97) at small distances, as it should be. Only the length scale of the 
logarithmic behavior has changed. It was given at criticality by the torus 
periods col, co2, while here it is given by the inverse fugacity m 1, or by the 
concentration (3.102), (3.103). The multipoint correlation function at short 
distances in the melt is therefore 

s ( d )  x [ ( 2 ) ]  
~n(m2/4) ~ ~ detx• K --In ]xi--xjl (3.105) 

Classical Long-Distance Screening. F o r  z ~ o% 

Ko(z) = (Tr/2z)l/2 e z[1 + O(z--1) 3 

Hence, at large distances, rm >> 1, one has 

G(r) ~ e m r  (3.106) 

and 

& ( x ,  ..... xK, m~/4) 

&(m~/4) ~ \2rnJ detx• [ - - x i _ ~ 2  ] (3.107) 
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The correlations are exponentially screened at distances larger than the 
correlation length. Hence the melt of (adjacent) Manhattan Hamiltonian 
walks, at a finite walk concentration, is in a normal fluid phase. 

4. FREE B O U N D A R Y  C O N D I T I O N S  (EVEN-EVEN LATTICE) 

4.1. General  Considerat ions 

Until now, we have considered closed Hamiltonian walks on a torus. 
When considering instead a rectangle with free edges, interesting new 
boundary effects appear. This situation has not yet been studied in detail, 
except for numerical work by Malakis. (1~ But the numerical enumeration 
of single HAWs was done only on small Manhattan lattices and the fit to a 
conjectured asymptotic form was not very precise. Here we derive the exact 
asymptotic number of single HAWs. 

We consider an even-even M x N (sites) Manhattan lattice with free 
edges, 

M = 2M, N = 2N 

The even-even lattice allows to arrange on it closed Hamiltonian walks 
(Fig. 10), which can be related to spanning trees as before. When one of the 
sides of the lattice ~ has an odd number of sites, the situation is quite dif- 
ferent, since only completely open HAWs are possible. They are no longer 
in direct correspondence to trees, and must be studied by a slightly dif- 
ferent technique (Section7). For  the even-even lattice, the Manhattan 
orientation must be properly chosen for closed HAWs to be possible. The 
lattice external perimeter must form a closed oriented loop (Fig. 10). 

A B 

< < < 

I 

D C 

(a) (b) 

Fig. 10. (a) A 4 x 4  Manha t t an  lattice with free edges. The relative orientation of the 
horizontal and vertical boundary lines is chosen so that there is one large oriented perimeter 
loop encircling the lattice. Then HAWs are possible. (b) The other choice of boundary orien- 
tations; HAWs are impossible, since they should start at B and D, end at A and C. 
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As for the torus, one introduces the grand canonical partition function 
of K disconnected Hamiltonian walks with free boundary conditions 

~ ( ) , ) =  ~ 2xNru.K (4.1) 

where N~. K is the number of K-HAWs with rooted origins. Let us recall 
that the walks can be either open, with the origin and extremity at one 
lattice spacing, or closed (Fig. 3). In the latter case, the position of the 
origin of the closed walk is counted. 

The only difference from the periodic case lies in the fact that only one 
of the sublattices LaA or LaB is now relevant. All Hamiltonian walks will 
indeed circulate in the same sense, defined by the lattice perimeter, and this 
selects either ( + ) or ( - ) plaquettes on J / ,  whose centers are sites of LaA or 
La B (Fig. 11). Here again there is a one-to-one correspondence to rooted 
spanning trees on La (=LaA or LaB exclusively), with free boundary con- 
ditions. Hence we write 

~ f ( 2 )  = -~ (m 2 = 42) 

= det(C r + m 21).~ (4.2) 

where C f is the connection matrix (2.3) of the M x N  unoriented square 
lattice La, with free edges. For  a one-dimensional lattice of M sites, C f 

c f =  

reads explicitly 

1 -1 0 O] 
--1 2 - 1  0 

0 0 M 

0 - 1  2 - 1  

0 0 - 1  1 

M 

(4.3) 

On the rectangle lattice M x N, C f is the tensorial product C~  | C f .  
The eigenvalues of C f | C f are 

mn nn 
2m,= = 4--  2 cos -~ - - -  2 cos ~ -  

Hence 

m~ [0, M - -  1], n~ [0, N- -  1] 

~rH(2 = m2/4) = I~ ('~m',n + m2) 
O<~m'<~M 1 
O<~n<~N--1 

(4.4) 

(4.5) 

822/51/3-4-4 
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Fig. 11. Three disconnected, closed Hamiltonian walks with 
skeletons are disconnected spanning trees on the sublattice 
counterclockwise square plaquettes of the Manhattan lattice. 
plaquettes) does not play any role here. 

free boundary conditions. Their 
~B, whose sites are centers of 
The other lattice ~ (clockwise 

In particular, the number of single HAWs (with varying origins) on the 
free edge lattice reads 

N f = 4 det' C f = . , l  1~ 2m,, (4.6) 
O < ~ m < ~ M - - 1  
O < ~ n < ~ N - - 1  
(re, n)  ~ ( 0 , 0 )  

4 . 2 .  A s y m p t o t i c  N u m b e r  o f  H a m i l t o n i a n  W a l k s  

It would be interesting to evaluate the asymptotics of the massive free- 
field determinant (4.5) in the case of free edges, as we did in Section 3 for 
the torus. For the sake of simplicity, we only evaluate here the first 
moment (4.6), via its logarithm 

in det' C~-  In D~= ~ In 4 -  2 c o s - ~ - -  2 c o s - -  (4.7) 
O<~ m <~ M - - 1  
O < ~ n < ~ N - - 1  
(re, n)  ~ ( 0 , 0 )  

To avoid the singularity brought in by the zero mode, we split the sums 
into 

M - - 1  N - - 1  

In Dr=  In D + ~ l n ( 2 -  2era) + ~ l n ( 2 -  2Cn) (4.8) 
m ~ l  n = l  

In D = ~ ln(4 - 2Cm - 2c,) (4.8a) 
l < ~ m < ~ M - - 1  
l < ~ n < ~ N - - 1  

with cm = c o s ( m ~ / M ) ,  c ,  = cos (n~/N) .  
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We make  use again of 

e - [k[ t  eikO 
l n [ 2 ( c h t - c o s O ) ] = t -  ~ 

k e Z *  

setting 

Then 

2 ch t,~ -- 4 - 2c,  = 4 - 2 cos --~-, l ~ n ~ N - 1  

lnD=(M-1)Etn-~ E e-'kl" 
. n k~z.  Ik-----~ Sk 

where the sum over  n means  f rom now on l ~< n ~ N -  1, and where 

j44-- 1 

S t  ~- E eikmrc/M 
m=l 

One finds 

S k 

M -  1 if k e 2 M Z  

- 1  if k ~ 2 Z ,  k ~ 2 M Z  

k~z -cotg~ if k a 2 Z + l  

375 

(4.9) 

(4.10) 

[ ( M -  1 ) t, + in(1 - e -2Mtn) __ ln(1 - e -2 ' " ) ]  

N - - 1  

l n D =  

1. The  first sum 

[Mt, - ln(2 sh tn) + ln(1 - e -  ZM,~ (4.11) 

N - - I  

al----M ~ t~ (4.12) 
t t ~  l 

which we rewrite as 

N - - I  

l n D =  
n ~ l  

The sum brought  in (4.10) by S t  for the odd values k E 2Z + 1 adds to zero 
by parity. The  two other  contr ibut ions  of  S t  are easily evaluated,  yielding 
finally 
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is evaluated with the help of the Euler-MacLaurin formula (3.60). We find 

MN ~ dO ln[2 + cos 0 + (3 + 4 cos 0 + cos 2 0) 1/2] 
0 " 1 :  7"C o 0 

1 2 w / ~  ) n M 2 Mln(3 + - ]-~-~ + ..- 

which we rewrite in term of the Catalan constant G, (3.18a), 

with 

= MN4G 7t M 0"1 - - - ~ M - -  + .-. (4.13) 

2. The second sum 

= ln(1 + x/2) (4.13a) 

N 1 

0"2 = - ~ ln(2 sh t.) (4.14) 
n = l  

cannot be evaluated by the Euler-MacLaurin approach under this form, 
since the derivatives diverge at the origin. So we introduce the regular part 

/'/7~ 
f(n) = - ln (2  sh t,) + In -~  (4.15) 

where the behavior 
subtracted out. 

We rewrite 0"2 as 

of tn in (4.9), t,=nn/N+ .-., near the origin is 

' " (4.16) 0"2 = 0"2 + 0"2 

N - - I  

0"'2= ~ f(n) (4.16a) 
n = l  

N - - I  F/TE / 2 x ~  1/2 1 
0 " ~ = -  ~ l n - ~ - = - N ( l n r t - 1 ) - 2 1 n N - l n  ~ j  ~- 

,= 1 12N 
(4.16b) 

Now a~ can be evaluated by means of the Euler-MacLaurin formula (3.60) 
applied to (4.15). We find after some calculations 

( lfo~ ) 1 ( ~ _ )  l z  + I ~  + a'e=--N I -  dxlnx +- : In  ... 
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with 

I= l_rc fo dx In [2(3 + 4 cos x -t- cos 2 x) 1/2 ] 

We finally find for cr 2 from (4.14), (4.16) 

(4.17) 

1 (,) ~r2= -NI + ~ ln(4,,f2)--~ ln N + O -~ (4.18) 

in (4.17) is actually calculable by factorization, I = N =  
This was expected for restoring the symmetry between the 

A well-known identity gives 

1-I 2 1 - c o s  = N  
n = l  

(4.21) 

(4.22) 

and 5% - In N. 

5PN = In 2 1 -- cos - -  
r t = l  

Integral I 
ln(1 + x//2). 
perimeter terms M in (4.13) and N in (4.18). 

3. The last sum in (4.11) 

N - - 1  

0"3= ~ l n ( 1 - e  2Mr~ 
n = l  

converges exponentially rapidly to its continuum limit, obtained by 
retaining only the behavior of tn in (4.9) near the origin, tn=n~/N+ ..., 
which yields 

a3 = ~ ln(1 - - e  2.nM/N)=In P(q) (4.19) 
n = t  

We finally find for lnD in (4.11), using (4.13), (4.18), and (4.19), 

l n D = M N  4G (M+ N)ln(I +x/2)--~lnMN+ ln(4x/2) 

+ln[ql/24p(q)(--~) 1/4] (4.20) 

It remains to add to In D the contribution of boundary sums appearing in 
(4.8), 
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Hence, we finally find from (4.20) and (4.22) 

ln Dr= ln D + 5~M + Sf N 

3 
= M N  4Gu - (M + N)In(1 + x / 2 ) + ~  In M N  

+~ln (4x f12 )+ ln[q1 /24p (q ) (M)1 /41+ ... (4.23) 

The asymptotic number (4.6) of open Hamiltonian walks on the 
even~even M • N Manhattan lattice with free boundary conditions is 
therefore 

N r 
H, 1 = 4 det' C f 

(4.24) 

4.3. Discussion 

Perimeter term. One notes the appearance of a subleading perimeter 
correction term a (M + N), as conjectured by Malakis. (1~ This author found 
numerically the approximate value a "~1.515 _+ 0.015, in reasonable 
agreement with the exact value (1 + v/2)1/2= 1.55377 .... When comparing 
expression (4.24) to the Kasteleyn-Barber result (3.21) for the torus, 

NH, 1 _ 2eGMN/,~ MN~/a(q) M (3.21) 

we see that the bulk dominant contribution with connectivity constant 
# = e G/~ is the same, as expected. This is a purely local term, which is boun- 
dary-independent. 

Critical exponent.  A power law correction term (MN) ~ also appears 
in (4.24) and (3.21), with a critical exponent depending on boundary con- 
ditions: 7free = 3, ~periodic= 1. This exponent is similar to the usual con- 
figuration exponent ~ of polymers, and its dependence on boundaries is a 
new effect, characteristic of a dense system. (22) The relevance of these results 
for dense polymers in 2D is discussed in detail elsewhere (z2) (also see Sec- 
tion 10). 

Con[ormal invariance. We also observe the different modular depen- 
dences of NH,1 and N f H,~, as r/4(q) and r/(q) respectively. The change of 
power by a factor 4 was expected. If we consider indeed the scaling 
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behavior on a strip of width N and length M--* o% i.e., the limit q =  
e 2~M/N__, O, we have from (3.20b) 

N R I ~ q  1/6, H f l ~ q  1/24 (4.25) 
H, 

Quite generally, (36) for a critical system, with finite-size partition function 
Z(M,  N), the free energy of the strip reads, for periodic boundary con- 
ditions, 

c 
lim 1 In Z(M,  N) = Nfo + ~z ~ + .. .  

m---, o~ M 
(4.26) 

and for free boundary conditions 

7~ C 

= Nfo + f s  + - ~ +  "'" (4.27) 

where - f o  and - f s  are, respectively, the nonuniversal bulk and surface 
free energies per unit of volume, and c is the universal central charge (27~ of 
the critical model. 

We get in both cases from (4.25) a value c = - 2 ,  which 
recovers ~2~ the universal central charge of Hamiltonian walks, as 
discussed in Section 2. 

5. NEUMANN OR DIRICHLET BOUNDARY CONDITIONS 

In order to discuss in the next section Hamiltonian walks on Manhat- 
tan lattices with arbitrary external shapes and free boundary conditions, we 
discuss in more detail here their relation to standard Neumann or Dirichlet 
problems. For simplicity we consider only the enumeration of single closed 
walks, which will be reducible to that of spanning trees on some underlying 
lattice (Section 6). We first show that the evaluation of spanning trees with 
free boundary conditions is actually equivalent to a Neumann problem. 

5.1. Free or Neumann Boundary Condit ions 

The number of rooted 1-spanning trees on a general graph G is given 
in terms of the connectivity matrix CG of (2.3) [-Eqs. (2.10), (2.11), (3.4)] 

NT,  1 = det' C6 (5.1) 

We shall see that for a graph G corresponding to the underlying lattice of 
some domain ~ with boundary on the Manhattan lattice, CG corresponds 
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to minus the discrete combinatoric Laplacian with free, i.e., Neumann, 
boundary conditions on the boundary of ~ (~nq~=0, where ~, is the 
normal derivative to the boundary). Thus, 

CG ~ --A[G, N . . . . . .  (5.2) 

To see the equivalence, it is sufficient to consider the Gaussian integral 

J : --~ i=lI~ &p(i) exp - ~ (i,j) 

where a field ~p(i) is defined for each of the No(G) sites iEG, one (~p(o)) 
being fixed for eliminating the zero mode. (i, j )  denotes nearest neighbors 
on G. In terms of the connectivity matrix Cc of G, J reads 

f NO(G) ( 1 t~pCGq~ ) 6(~o(o)) (5.4) J = l-I &p(i) exp - 
i=1 

On the other hand, the continuum limit of (5.3) can be written as a 
functional integral over fields ~o(x) defined on a domain D with boundary 
3D 

and if one imposes the vanishing of the normal derivatives at the boundary 
~. ~0 -- O, then 

J=f[D~o]expI~i~oA~odZx]6(qo(o)) (5.6) 

which is just (5.2). 

5.2. Dir ichlet  M a n h a t t a n  Rectangle 

The Laplacian with Dirichlet boundary conditions (~p=0 on the 
boundary) on a rectangle is therefore not described by the matrix C in 
(4.3). Let us consider a larger ( M +  1)x ( N +  1) site rectangle s with 
sites i =  (m, n), 1 ~< m ~< M + 1, 1 ~< n ~< N + 1 (Fig. 12). A lattice field r is 
defined such that r at the boundary edges i~c3s i= (1 ,  n), 
( M + l , n ) ,  (m, 1), or ( m , N + l ) .  We introduce the Dirichlet Gaussian 
integral {1 0, } 

JO=f 1-I do(i) exp -- ~ ~ [q~(i)--q~(j)]2 (5.7) 
i~r (i,j) 
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M + I  

M o  . . . .  o . . . . . . .  o . . . . .  o . . . . . . .  o . . . . .  o | 

! '; i ! , ~ __~ 
i 

I J : i : 

6 . . . . .  6 . . . . . . . . . . . . . . . .  6 . . . . .  6 
1 ~l. N 

1 N + I  

Fig. 12. ((3) Original M •  site lattice LP A or ~B on which the connectivity matrix C r is 
defined. ( •  Dual ( M +  I ) •  1) site lattice with Dirichlet conditions on the external 
perimeter, for which de t ( - z / ) l  D is calculated. 

where (i, j )  denotes all nearest neighbors, the superscript (0) including 
sites at •5 ~ One has 

1 ,~oCDq~) (5.8) I~ dqg(i) exp - 
JD = f ir . 

where the new Dirichlet matrix C D reads C ~  C~_ 1| Cu ~ 1, with 

2 - 1  0 0 

- 1  2 - 1  0 

0 

0 - 1  2 - 1  

0 0 - 1  2 

M - 1  

r  = M - 1  (5.9) 

for the one-dimensional Dirichlet Laplacian. This matrix differs from C~ 
of (4.3). Going to the continuum limit in (5.7), we identify C D as the 
combinatoric Laplacian with Dirichlet boundary conditions 

c D = - A  I ~ .  Dirichlet (5.10) 

The eigenvalues of C D are simply found from (5.9), 

m T T  n T ~  

2 , , , n = 4 - 2 c o s - ~ - - - 2 c o s - ~  -, l~<m~<M-1 ,  l<~n<~N-1  (5.11) 
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and are contained in the larger set 0 ~< m 4 M -  1, 0 <~ n ~< N -  1 of eigen- 
values (4.4) of C f. We therefore observe that the partial determinant In D in 
(4.8a) calculated above is just that of the Laplacian C D on ~o,, 

In det( - A  )[ ~o, Dirichl~t = In D (5.12) 

The other Neumann determinant, det' C r [(4.7), (4.8)], of the connectivity 
matrix C f of the original rectangle 5 ~ (Fig. 12) is thus given by [-use 
Eq. (4.22)] 

det' C f = MN det( - A )[ ~,, Diri~hl~t (5.13) 

5.3. Dual i ty  

The result (5.13), obtained directly for the rectangle, is actually a 
particular case of a general duality property between Neumann boundary 
conditions on a given lattice G and Dirichlet ones on the dual lattice G* 
(Fig. 12). I t  is shown in Appendix B that 

det' CG = det'( -A)[~,  N . . . . . .  

= No(G) det( - A )[ a*, Dirichlet (5.14) 

where No(G) is the number of sites of G, or of faces of its dual G*. In the 
next section this result will find an interesting application to Manhattan 
lattices with various geometries. 

6. OTHER GEOMETRIES 

6.1. General  Considerat ions 

As remarked by Kasteleyn, (4) the enumeration of Hamiltonian walks 
on an oriented lattice is always possible when this lattice is the covering 
graph fr of any oriented graph (q. By the covering graph ~c of cs we 
understand (1'4) the oriented graph obtained by: (1) replacing each oriented 
line or edge of aj by its medial point, (2)joining two such medial points, if 
the corresponding original lines in ff were consecutive, by an new oriented 
line. The orientation of this new line of ~~ is chosen in accordance to those 
of the source lines of ~. 

For  instance, the Manhattan lattice J /  is the covering graph of an 
oriented diagonal square lattice, with specific orientations (Fig. 11). 

Then there is a one-to-one-correspondence between the Hamiltonian 
circuits on the covering ~c ( - - ~ )  and the Eulerian circuits on the covered 
graph N.(4) Systematic successive coverings of the Manhattan lattice have 
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been studied in detail by Malakis. (~0) Here we first give other examples of 
Manhattan-like graphs and of Hamiltonian walks on them. Later we give a 
general analytical result for their enumeration. 

6.2.  K a g o m ~  L a t t i c e  

Let us consider the oriented Kagom6 lattice YV where all hexagons are 
oriented in the same direct sense (Fig. 13). By joining the midpoints of the 
edges of the hexagons, one obtains the oriented covering graph Yl ~ of the 
Kagom6 lattice z( ,  which is diamondlike (Fig. 13). The orientations on Jg~ 
are chosen in accordance with those on oU. We imagine that a free 
perimeter is delimited on ~ ,  by retaining only a connected set of Kagom6 
hexagons, i.e., a connected set G of hexagon centers (Fig. 13). This choice 
on Jr( then induces free edges on Y~. Then, looking at Hamiltonian 
circuits on J{'~ with these boundaries, it is not difficult to convince oneself 
that they are in one-to-one correspondence to Eulerian closed walks on Y{" 
(Fig. 14a). In turn, these Eulerian walks are in one-to-one correspondence 
with (unrooted) spanning trees on graph G, which is made up of the 
hexagon centers of X or J('~ (Fig. 14b). So we have, as for the rectangular 
Manhattan lattice, 

0 c 0 Nn,~(Y ) = NT, I(G ) (6.1) 

Enumerating unrooted trees is done by using formulas (3.4), (3.5): 

1 
N~ -- No(G ) det' CG (6.2) 

where CG is the connectivity matrix (2.3) of the unoriented graph of 
hexagon centers (Fig. 14). 

~iiiiiiiiiiiiii~ 

~ .::5 

Fig. 13. Oriented Kagom6 lattice Jf (solid dots) and its oriented covering graph Yg~ which 
is diamondlike and made up of adjacent hexagons, squares, and triangles. 
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(a) 

(b) 

~:ki!i!iii:ii:iii:. :i!ii!i!i!i ::i:i!ii!ii~+. 

Fig. 14. (a) The Kagom6 lattice with free edges. Here we have chosen a triangular shape. A 
Hamiltonian loop circulates on the covering lattice :Y(~ (b) A Hamiltonian loop is in one-to- 
one correspondence with a Eulerian circuit on 2(, itself determined by a spanning tree on the 
triangular set G of hexagon centers. 

This discussion is quite general and is independent of the external 
shape of (r we have chosen. On Fig. 13b we have chosen a particular 
triangular shape of Yl, j l c ,  and G. The fact that the sites of G (open dots in 
Fig. 14b) lie on the triangular lattice enables us to introduce another orien- 
ted lattice on which we shall consider HAWs, the triangular Manhattan 
lattice g-, which we study now. 

6.3. Tr iangular  M a n h a t t a n  Latt ice 

This lattice ~- (Fig. 15) is the generalization of the rectangular Jr The 
external shape could be generalized to be polygonal. As on Jr the 
circulation alternates along each strate of Y-. The open dots are the centers 
of (counterclockwise) oriented plaquettes. They are also identical by con- 
struction with the centers of hexagons in the previous Kagom6 lattice. 

Now, as before for the free Manhat tan  lattice ~r the Hamiltonian 
walks of J -  are in one-to-one correspondence with spanning trees on the 
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Fig. 15. The triangular Manhattan lattice ~--. The set G of centers of (counterclockwise) 
oriented triangular plaquettes (open dots) is the same as that of the centers of (oriented) 
hexagons in the former Kagom6 lattice J{. 

graph G made up of the centers of (here counterclockwise) oriented pla- 
quettes. An example is given in Fig. 16. Since the graph G is the same as 
that associated with the Kagom6 lattice, we conclude that the Hamittonian 
problems are topologically the same on ~#c and Y. Hence 

1 
o c N H ' I ( J  ) No(G) Nn, l(o U )=  o ~ = - - d e t ' C G  (6.3) 

From Eq. (6.3) we could compute the exact asymptotic number of 
Hamiltonian circuits on y c  or Y- in the particular case of a triangular 
boundary. It is important to realize, however, that the Hamiltonian 
property is purely topological. In particular, the boundary lines are parallel 
to the lattice axes. Hence, when we go to the thermodynamic or continuum 

Fig. 16. A Hamiltonian circuit on J-, topologically equivalent to the covering Kagom6 
HAW (Fig. 14). 
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limit, we obtain a continuum triangle whose angles are all re/3 and are not 
arbitrary. The spectrum of the Laplacian in the triangles is not known in 
general, though a lot of work has been devoted to it. (37) For an equilateral 
one, the eigenvalues of the Neumann connectivity matrix CG are known, 
and the determinant det' CG could be evaluated asymptotically as in 
Section 4 for the free Jg, but we d o  not intend to reproduce the whole 
analysis. Instead we give a quite general result, obtained from spectral 
theory. 

6.4. Hami l tonian Number  in a Domain of Arbi t rary  Shape 

We expect in general for single, oriented Hamiltonian circuits or span- 
ning trees in a large domain ~ with boundary the asymptotic numbers 

N o _ N o , , d , , ~ 0 - 1  (6.4) 
I-/, 1 - -  T , I ~ / ~  U ' S ~  

where ~r is the "area" of 9 ,  i.e., its number of sites, or the number of 
points of the Hamiltonian circuit, ~ is the perimeter of the boundary, i.e., 
the number of points of the Hamiltonian walk on the perimeter, and # and 
#s are, respectively, the bulk and surface Hamiltonian connectivity 
constants. 7o is a critical exponent, like the usual y for SAWs. (22) 

For example, in the case of the rectangular Manhattan lattice Jg, Eqs. 
(3.21) and (4.24) give 

# = eG/~, #s = (1 + x//-2)-1/2 (6.5) 

go = 1 (torus), ~7 o = 3/4 (free rectangle) (6.6) 

The constants #, #s are strongly lattice-dependent. However, they do not 
depend on the topology of the Hamiltonian walk (open or closed, or even 
branched(Z2)), and they are ultraviolet local quantities, depending only on 
the connectivity of the lattice. In contrast, the critical exponent ~7 o depends 
on the topology of the domain and also on the geometrical shape of the 
boundary. This interesting shape dependence of go is now discussed. We 
shall see that the exact value of ~70 can be deduced from classical results of 
spectral theory for a domain with an arbitrary shape. 

6.5. Spectral  Theory 

For any oriented Hamiltonian problem that can be transformed into 
counting (unoriented) spanning trees on a graph G (as on ~/,  a~ "~, Y-,...) 
with free boundaries the number of circuits N o is given by H , I  

1 
N o det' C6 (6.7) 

H. 1 = No(G) 
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We now use the duality relation (5.14), which relates Co to the com- 
binatoric Laplacian on the dual lattice G* with Dirichlet conditions 
(Fig. 17) 

N O = det( - A)] o*, Dir i ch l e t  (6.8) H ,  1 

We are interested in the large-lattice or continuum limit. In this limit, the 
shape of G and that of its dual G* become identical (Fig. 17). The spectrum 
of the continuum Laplacian in a finite domain ~ ( - -G  or G*) has been 
very much studied in the mathematical literature. (38'31) 

In particular, the determinant of - A  with Dirichlet boundary 
conditions is defined by the so-called ~-function regularization. ~29'311 The 
~-function of the eigenvalue spectrum {)on} of A is defined by the infinite 
series 

~(s) = ~ 2~ -s (6.9) 
tt 

which converges for s sufficiently large and positive. The important 
property (29'31) is that it can be analytically continued toward s = 0. 

Then the ~-regularized determinant of the Laplacian is defined as 

d e t ( - A )  = e -~'(~ ( =  l~I 2n) (6.10) 

Now suppose one dilates all dimensions of the continuum domain @ by a 
factor ~. The new spectrum of A is then {~-22,}, and ~(s )  = ~2S((s). The 
dilated determinant (6.10) then reads 

det( - A)[ ~ = c~-2~(~ det( - A)[ 

Fig. 17. The triangular lattice G (dashed lines) and the dual honeycomb G*. The external 
perimeter of G* is still triangular and becomes an equilateral triangle in the continuum limit. 
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Since the area of the two-dimensional domain scales like ~2, we conclude 
that in two dimensions the area dependence of the Laplace determinant 
(6.10) with Dirichlet boundary conditions is (up to regularization-depen- 
dent exponential leading factors) 

det( - A ) l  ~ " "  ~'~' - c(o) (6.11) 

where d is the area of @. Thus, ~(0) is nothing but 1 - 90, where 70 is the 
geometrical index characteristic of the domain 9 ,  introduced in Eq. (6.4). 

This result gives the solution, since the value of ~(0) is known (3~'38) to 
be only a function of the geometrical shape of the boundary for a domain 
with the topology of a disk. In particular, let us consider a boundary ~#  
made up of rectifiable arcs y~ joined at corners of angles ~j. For instance, 
for the rectangular Manhattan lattice ~ '  or the Manhattan triangle 3- 
above we have, respectively, 

~i = zc/2, i = 1  ..... 4 {Jg} 
(6.12) 

~i = zc/3, i =  1,2,3 {9--} 

The contribution of corners to the asymptotic Dirichlet problem was found 
by D. B. Roy (described in McKean and Singer(38)). The general result (38) 
reads in the ~-formalism 

= + ~ i-~-~ #7i p (6.13) ~(0) j 24 \~ j  ~ /  . 

where p is the curvature along the smooth arcs Yi. 
Let us apply this result to the determination of the critical exponent 

90- 

6.6. Exact Exponent V 

Equations (6.8) and (6.11) thus yield the general scaling behavior (6.4) 
of the number of Hamiltonian circuits in a domain with boundaries 

N O , , ~ , , , ~ %  1, H, 1 ~ / ~  k * S ~  ~0--  1 = -~(0)  (6.14) 

where ~(0) is given by Eq. (6.13). For the rectangular Manhattan lattice Jr 
we find from (6.12) and (6.13) 

7o,~,- 1 = - ~ ( 0 ) =  -1 /4  (6.15a) 

in agreement with the direct evaluation (6.6) and (4.24). For the covering 



Multiple Hamiltonian Walks on Manhattan Lattice 389 

graph of the Kagom6 lattice S c, which is equivalent to the symmetric 
triangle Y-, we have from (6.12) the new result 

~ 0 , 9 - - 1 =  - ~ ( 0 ) =  -1 /3  (6.15b) 

Let us recall that the Hamiltonian problem is purely topological, while 
a formula like (6.13) is metric. To use this metric formula, one has to note 
that the discrete Manhat tan  lattice is parallel to the boundary edges and 
forces the continuum limit to correspond to a regular polygon with equal 

angles. Different continuum angles would require Manhat tan  lines that 
would be cut by the external edges. 

Formulas (6.15a) and (6.15b) can be generalized to a polygonal  

Manhat tan  lattice (generalizing Figs. 10 and 15), where the boundary is a 
closed polygon with P sides and P equal angles c~ = r t ( P - 2 ) / P .  Then 

7o - 1 = - ~ ( 0 )  = - ~ ( P  - 1 ) / ( P -  2 )  (6.15c) 

In Section 10 we discuss the relation of this exponent to those of dense 
polymers. 

7. OPEN H A M I L T O N I A N  W A L K S  ON M A N H A T T A N  LATTICE 

7.1. Descr ip t ion  

We return to the original Manhat tan  rectangular lattice with free 
edges. In Section4 we considered free boundary conditions for an 
even-even (M = 2 M ) x  (N = 2N) lattice, where closed Hamiltonian walks 
were possible (Figs. 10 and 11). It  is quite interesting to remark that for an 
Modd x Nod d or M . . . .  X Nod  d Manhat tan  lattice, there is always one corner 
with diverging arrows and one with converging arrows (Fig. 18). This con- 
strains the Hamil tonian walk to travel from the first to the second corner 

/ 

q 

/ 

> 

? 

- m  

Fig. 18. The odd odd 3 x 5 Manhattan lattice (M = 2M-  1, N = 2N-- 1, M = 2, N = 3). All 
HAWs start at the wedge with diverging arrows and end up at the converging one. 

822/51/3-4-5  
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and to be open along the diagonal of J r  Moda x Noaa and along one 
edge for M . . . .  x Noa d. So we now have an open polymer chain rather than 
a cyclic polymer. This shows the extreme sensitivity of Hamiltonian walks 
to boundary conditions. 

The number of configurations of such an open walk has been studied 
numerically by Malakis. (1~ Here we want to evaluate it exactly. This is 
interesting for the following reason. Due to the change of topology of the 
HAW, which now starts in two corners, we shall be able to extract from 
our exact results a (universal) critical wedge exponent. As we shall see, it is 
identical with the one derived recently for dense polymers (22) from confor- 
mal invariance and Coulomb gas methods. 

Consider the odd-odd Manhattan lattice ~ / w i t h  M x N sites, 

M = 2 M -  1, N = 2 N -  1 (7.1) 

and denote by NW(jg)  the total number of open Hamiltonian walks going 
from the wedge of Jr with diverging arows to the one with converging 
arrows (Fig. 18). The number N w of open walks can still be evaluated 
exactly by an extension of the equivalence to spanning trees, as used in 
Sections 1 and 2 on the torus and in Sections 4 and 5 for free boundary 
conditions. Indeed, we remark that the open wedge-to-wedge walks on 
odd-odd J/L are in one-to-one correspondence to closed walks on the 
extended Manhattan lattice d//+ = Jr ~3+ ~ / o b t a i n e d  by adding to J///a 
column and a row of M + 1 and N + 1 sites sharing one site at their right- 
angle crossing (Fig. 19a). 

Then J//+ is an even-even ( M + I ) ( N +  1) lattice, as in Section4. 
Then to any wedge-to-wedge walk ~/K on dg corresponds a closed walk on 
d//+ obtained by closing ~ along the added row and column of Jg+  
(Fig. 19a). So we have 

NW(J/L) = NO 1( ~ ' +  )l borderline H, (7.2) 

where N O + H,I( ~ r  )l borderline is the total number of unrooted closed HAWs on 
~ ' +  subjected to the constraint that they follow the added square half- 
borderline, made up of the bottom row and right column. (These closed 
HAWs form a subclass of the HAWs on Jr247 with free boundary condition, 
as calculated in Section 4.) 

These special "borderline" HAWs on J [  + are now in one-to-one 
correspondence to a special subclass of (unrooted) spanning trees on the 
square, unoriented M x N  sublattice 2 '  of J/l + (on Figs. 19a and 19b, 
5~ = 50B, whose sites are centers of counterclockwise plaquettes of Jr247 ). 
Let us denote by i = ( m ' , n ' )  the sites of 5 o, with 0 ~ m ' ~ < M - - 1  and 
0 ~ n' ~ N -  1. The bottom row and right column of 50 are labeled, respec- 
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tively, by ( M -  1, n'), 0 ~< n' ~< N -  1, and by (m', 0), 0 ~< m' ~< M -  2 (Figs. 
19a and 19b), and form the half-borderline 0 + 5  ~ The other half-bor- 
derline, 0 5r is formed by the sites (0, n'), 1 <~n'<<.N- 1, and (m', N -  1), 
O <<. m' <<. M -  2. 

Then on ~ the spanning trees corresponding to the special "bor- 
derline" HAWs on ~ + are those that bond straight together all sites of 
~+ 5r (Fig. 19b). Now we remark that these special spanning trees can be 

N 

0 0 " 0 

1 I~ ~, ) _ _ _ ~ _ _ /  
I 
I 

, f 
I t 
i I I I I i 

�9 o 4 ,  �9 o 4 '  ~ '  o �9 
I i i 1 ~ I 
i i i i I 
- - - , - - - ' - - - , - - . - - - - , - - - . - - - - , - - . - - , - - .  

( a )  
M 

I 
I 

Y 
I 

I 
I 

i , ~ '  I r , J 
' : ~ = = = = = ~ = =  r ' f 

I I I ----,--,--.---.----,---,----,__,__,__, 

( b )  

\ \\ 

\ \ \  i \ r 
\ \ J 

o 
( c )  

Fig. 19. (a) The open HAW of Fig. 18 has been completed to a closed circuit on ~ § (4 x 6 
Manhattan lattice). (b) This closed circuit is in one-to-one correspondence with a special 
spanning tree on the unoriented (M = 2)• ( N =  3) square lattice ~o (open dots). All bonds of 
the half-borderline a .  ~ (double lines) belong to the spanning tree. (c) Special spanning trees 
on ~ spanning all bonds of 0 .  ~ are normal spanning trees on the reduced graph G = 
~ / ~ .  ~ (dotted lines) 6btained by coalescing 0§ ~e to a single point 0. 
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considered as usual spanning trees on a new graph G obtained from 50 by 
identifying all the sites of ~+50 with a single site (Fig. 19c), which we 
denote by 

Then 

G=50/0+50 (7.3) 

o + N ~ ,(50/0 + 5 ~ ) NH,  1 (J/g' )1 borderline = (7.4) 

where N~ is the number of unrooted spanning trees on G, with no 
further constraint. Now, we use Eqs. (3.4) and (3.5) to calculate 0 , Nr, AG ) in 
terms of the connectivity matrix CG of G, 

1 
N~ = det C~/{a} - No(G-----3) det' C c (7.5) 

where det Cc/{a} is the minor with respect to any point a of G, and det' is 
the product of all nonvanishing eigenvalues. Note that the number of sites 
of G is 

No(G) = ( M -  1 ) ( N -  1)+ 1 (7.6) 

Now, as in Section 5 and Appendix B, it is convenient to consider the 
Neumann Gaussian integral (5.3) on graph G 

f { 1 ~ [go(i)_go(j)]2} (7.7) J = i~aI~ dgo(i) 6(go(o)) exp - ~ <i,j> 

where the site { o } is the special site of G obtained by coalescing the half- 
borderline 0+50 of 50. This Neumann integral (7.7) is obtained from 
Eq. (B.2) of Appendix B as 

J = (2~)[ No(6) 11/2(det CG/{a}) -'/2 (7.8) 

Now, we remark that (7.7) can also be written as an integral over fields 
living on the sites of 50: 

; { '  } d =  I~ dgo(i) I~ 6(go(j))exp - ~ ~ [<p(i)-go(j)]2 (7.7bis) 
i ~  .L ~ j e  O + .~ a ( i , j>  

where the field go vanishes along the half-borderline 3 + 50 and is free along 
the other half-borderline 0 5 ~ Following the same line of argument as in 
Appendix B, this shows that (7.7bis) corresponds to the discrete Laplacian 
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oil the infinite lattice, with Dirichlet boundary conditions on c~+ 5e and 
Neumann boundary conditions on c3 5r Hence, from (7.8), 

det CG/~a~ = det( -A) [  Dirichlet O+,,~ (7.9) 
Neurnann (3 

7.2. S p e c t r u m  3 

The spectrum of the bulk discrete Laplacian with these mixed boun- 
dary conditions is easy to find by tensorial products. Let us consider first 
the problem in one dimension, say along a row 0 ~< n'~< N - 1 .  Then the 
bulk Laplacian is 

-Aq~(n') =- 2qg(n')-  q~(n' - 1 ) -  ~p(n' + 1) 

We extend any field ~p(n'), 0 ~< n'~< N -  1, satisfying ~p(0)= 0 with ~0(N- l) 
free to the interval IN, 2 N -  1 ] by 

q~(2N-l -n ' ) -q~(n ' ) ,  O<~n'<~N-1 

and then to the interval [ - - 2 N +  1, 0] by antisymmetry, 

q~(-n')  = -~0(n'), 0~<n '~<2N-  1 

The extended field is now periodic on Z, with period 2 ( 2 N -  1 ). Hence, the 
eigenvectors of the above bulk Laplacian can be obtained by the Ansatz 

q~(n') = a e  2 " i k n ' / 2 ( 2 u -  x) + be--2~zikn'/2(2N-- 1) 

with a Brillouin zone k ~ [0, 2 N -  1 ]. The above symmetry equations give 

a = - b ,  k = 2 n - 1 ,  l<~n<~N-1 

with eigenvalues 2 - 2 cos [-(2n - 1 ) / ( 2 N -  1 ) rc]. 
In two dimensions, the eigenvectors of - A  with mixed Dirichlet- 

Neumann boundary conditions are then factorized into s in[r~m'(2m-1)/  
( 2 M -  l )] sin[zn'(2n - 1 ) / ( 2 N -  1)] with eigenvalues 

2 m -  2 n -  1 
2,,,, = 4 - 2 cos 2 - - ~ _  ~. zc - 2 cos ~--~L--i- ~ 

l<~m<~M-1, l<~n<~N-1 (7.10) 

Note that this gives ( M - 1 ) ( N - 1 )  nonvanishing eigenvalues for CG, as 
expected from (7.6). 

3 This section and Section 7.3 were prepared in collaboration with J. M. Lack. 
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Collecting Eqs. (7.2)-(7.5), (7.9) and (7.10), we find the exact number  
of wedge-to-wedge walks 

N~ w = det( - d )l Dirichlet O+ s 
N e u m a n n  c ~ Ar 

2 m -  1 2 n -  1 "~ 
- D ' =  l-] 4 -  2 cos ~ - - ~  ~ - 2 cos 2 - - ~ _  1 rt J (7.11) 

l<~m<~M 1 
l <~n<~N-- I 

7 . 3 .  

and set 

For  

F o u r i e r  T r a n s f o r m  

The calculation of In D '  is similar to that of in D in (4.8a). We first use 

e - I k l t  

ln [2  (ch t - cos 0)]  = t - k),.~_~ - ~  #ko (7.12) 

we have the identity 
M - - 1  

S k  = E eikOm "~ C.C.  

m = l  

= ( - 1 )  ~+'  

= ( - -1 )k '2 (M - 1) 

Hence we write 

In D'  --- ~ ln [2  (ch t.  - cos 0~)] 
m , n  

-- ( M -  1 ) t . -  Z 
n =  1 k e N *  

if k r  

if k = k ' ( 2 M - 1 ) ,  k ' e Z  (7.13) 

e -- ktn 

- - ( - 1 )  k+ '  
k 

k r 0 m o d ( 2 M  - 1 ) 

2 ( M -  1) )k' e (2~_.. 1)k',:] 
-- Z 2 M _ l  ( - 1  k'~N* k' ] 

e ktn e--(2M--1)k'tn~ 

N t 

= Y. [ ( M - 1 ) t , - l n ( l + e  ' ~ 1 7 6  
n = l  

2 m -  1 
Om = ~ (7.12b) 

2 M -  1 

2 n -  1 
ch tn = 2 -  cos ~ - Z - ~  it, l<<.n<~N-1 (7.12a) 
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It will be convenient  to rewrite this sum as 

l n D ' = ~ l { ( M - ~ ) t , - l n ( 2 c h ~ ) + l n [ l + e  -~2M 1)"]} (7.14) 
n = l  

This is an exact result, which we now evaluate asymptotically.  

7.4. A s y m p t o t i c  N u m b e r  of  Open W a l k s  

Using the nota t ion t(O) for the positive solution of ch t = 2 -  cos 0, 

t(O) = ln[2  - cos 0 + (3 - 4 cos 0 + cos 2 0) I/2 ] 

we have by symmetry  with respect to 0 =  rc [see (7.12a)] 

N--1  1 

t , = ~  [Soad--  t (~)]  (7.15) 
n = l  

where Soda involve the summat ion  over odd l's only 

L = 2 N -  l 
1 ~ o d d / ~ < 2 L  1 

It is convenient  to complete the sum with even terms 

S(L)=-- ~ t ( l z t  (7.16, 
l <~l<~2L 1 

\1.~ / 

Then, identically, 

Soaa = S( L ) - S( L/2 ) 

(7.15bis) 

Now S(L) in (7.16) ranging over the period 0 e  [0, 27t] is easily evaluated 
asymptotical ly with the help of the Euler MacLaur in  formula (3.60), 

S(L) = 2L t(O) - t(0) + [ - 2 t ' ( 0 ) ]  ~ + . . .  

with t(0) = 0, t '(0) = 1, and t(Tz) = 2 ln(1 + xf2).  
Hence we finally find from Eqs. (7.15) (7.18) 

r ,,o, 
.= l  t. \ 2 / \  2J3o lr 

2M--1  
24 2 N -  1 

~- . . .  (7.19) 

(7.18) 

(7.17) 
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where, as in (3.62), 

lot(O) dO 4 - -  = -  G (G Catalan's constant) 
7~ 7~ 

The second sum in (7.14) is evaluated by the same completion method as 
in (7.15) and (7.16). We find 

Jo T 2  lnl-2(3 -cos  0)] 

Finally, the last sum in (7.14) converges very rapidly and it suffices to 
approximate t~ by its expansion near the origin t . - - - 0~=(2n -1 )n /  
( 2 N -  1 ), which gives the infinite-product limit 

N 1 

2 l n [ l + e - ( 2 M - ' ) " ]  ~ l n  f i  ( l + q  ~-1/2) (7.21) 
n = l  n = l  

with 

2 M -  1 M 

q = e -2~r ~ = 2 N -  1 = N (7.22) 

Collecting 
evaluation 

lnD'~-(M-~)(N-~) 4G--n ( M + N - 1 ) l n  , +  

+ln[23/4q -1/48 FI ( l+qn-1 /z) ]  
n = l  

In terms of the number of sites (7.1) of the odd-odd Ma 
finally get the number of open Hamiltonian walks 
finishing in the diagonal wedges of s// (Fig. 18), 

U~ v,-~ e~MN/~(I "~- ~V~) -(M+IN)/2 X 23/4q 1/48 IJ (1 +q.-1/2) 
n N l  

Eqs. (7.14) and (7.19)-(7.21) gives fina,'-~ the asymptotic 

5) 

(7.23) 

rattan lattice, we 
11) starting and 

(7.24) 
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Note  the following identity(29"3~ 

q-1/48 1~ (1 + q n  1/2)= r/Z(q) (7.24bis) 
n >/1 r/(q 1/2 ) r/(q 2) 

This expression is invar iant  under  the exchange M ~  N [-or r ~ - 1 / r  in 
the modu la r  invar iance formal ism (3.39)],  as it should be. 

Let us now compare  the asympto t i c  numbers  N f n,1 [Eq.  (4.24)] of 
Hami l ton i an  walks on the even-even  M a n h a t t a n  lattice and N w [Eq.  
(7.24)] of walks on the o d d - o d d  lattice. They have the same dominan t  
bulk and surface (per imeter)  terms, as could be expected, but  the power  
correct ion terms ( M N )  ~ are different, 

fff= 3/4, ~ w =  0 (7.25) 

The modu la r  dependence is also different. These exact results on the 
exponents  are quite interesting, since they will al low us to determine 
directly a (universal)  surface exponent  of  the Hami l ton i an  walks. 

7.5. An Exact  S u r f a c e  or  W e d g e  Cr i t ica l  Exponent  

Consider  a dense po lymer  chain of length 1 in a rectangular  box 
(Fig. 20). The  n u m b e r  of sites A of the box is such that  the occupied frac- 
t ion f =  I/A remains finite even in the t he rmodynamic  limit. This dense 
po lymer  system, or  melt,  has been studied in detail in refs. 20-22 in two 
dimensions and  its exact critical exponents  determined.  

Let  cot(r, r ' )  be the n u m b e r  of configurat ions of  the chain of length l 
joining r to r'. I t  has the critical behavior  (22) 

cot(r, r ' )  ~ coo, t Ir - r '1-2x, (7.26) 

Fig. 20. (a) A dense, self-avoiding chain in a box. The extremities repell each other, with the 
number of configurations increasing with distance e)(r, r') ~ Ir - / I  3/8, for r and r' in the bulk. 
(b) The analog for a dense SAW in corners (a =n/2) of Fig. 18 for HAW. Then og(r, r ' )~  
I r -  r'll/2 ' 
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where COo. t is the number of configurations of a dense loop of length l with 
fixed origin in the same box, and xl is a critical exponent, whose value in 
2D is, for dense polymers, (2~ 22) 

Xl = -3 /16  (7.27) 

and has been obtained (2~ from Nienhuis' results/24) and checked 
numerically. (21) Its negative value is related (24) to the n = 0 limit of the O(n) 
model describing polymers. Dense polymers correspond furthermore to the 
critical low-temperature phase of the O(n = 0) model. (2~ This negative 
value mans that in a melt the extremities of a chain repeIl each other. The 
behavior (7.26), (7.27) holds as long as the extremities of the chain do not 
approach the boundaries/22~ When the two extremities are very close to a 
boundary line, a new surface scaling behavior is developed (39) 

~S(r, r ' ) ~  ~Oo, t ] r -  r'1-2xf (7.28) 

where for dense polymers the surface exponent is (22) 

x S =  - 1 / 8  (7.29) 

again a negative value, implying repulsion along the surface. If one 
extremity is pinched in a wedge of angle a, then the corresponding scaling 
dimension is given by conformal covariance (27'39) 

XlW(C~ ) =-r~ xS (7.30) 

such that 

~o~(r, r ')~ ~o,l Ir-  r'l 2x'~ (7.31) 

for two extremities in wedges. 
It has been shown analytically in a previous work (25) that Hamiltonian 

walks on the Manhattan lattice are in the same universality class as dense 
polymers (see also last section). Hence, the exponents x s for HAWs and 
dense SAWs should be the same. 

We obtain here an independent verification of this universality. Here 
we have found indeed for closed circuits on a Manhattan lattice with free 
boundary conditions (4.24) 

NO = 1 ~er oGMN/rt(1 +N)/2(MN) (7.32) H,I (M -1 /4  

and this is just the analog of O9o, t for a dense Hamiltonian polymer loop of 
length 

l=  MN 
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The number of configurations of the open Hamiltonian walks with 
extremities in the corners of Jr (Fig. 18) is 

U~l~ eGMN/~(1 + ~/'2) (M+N)/2(MN) 0 (7.33) 

It corresponds exactly to ~, ~o f f ( r - r ' )  [(7.30), (7.31)] for r and r' in the 
corners of J/{, such that ~ = ~/2, x w =  2x s, and ] r - r ' l  ~ (MN) m. In this 
case, we have from (7.31) 

x W ~ow/~Oo ~ ( M N ) -  ' = (MN) 2xs 

while (7.32) and (7.33) give exactly ~ w / o j o ~  w o NH/NH ~ (MN) ~/4. Hence, 
from our study of Hamiltonian walks we find 

x f  = -1 /8  

in complete agreement with (7.29) obtained for dense polymers from 
Coulomb gas methods applied to the O(n) model./z2'25~ It is worth noting 
that here an exact 2D critical exponent x s =  -1 /8  has been computed 
by elementary means, evaluating exactly determinants and numbers of 
configurations in a critical system. 

B. NESTED MULTIPLE WALKS, N O N H O M O T O P I C  TO ZERO 

8. NESTED HAMILTONIAN CIRCUITS AND POTTS MODEL 

8.1. General Considerations 

Until now, we have always discussed the case where Hamiltonian 
walks or rooted circuits were adjacent on the Manhattan lattice and formed 
a close packing of circuits. On the torus, we imposed the further constraint 
that all circuits were homotopic to a point. This gave us the relation to mul- 
ticonnected spanning trees. Then we showed that they were equivalent tO a 
two-dimensional massive free field theory with a critical point at zero 
fugacity (few walks). 

One may wonder now what happens when circuits are allowed to 
encircle other ones and form nests on ~ (Fig. 21). On a Manhattan torus 
as in Fig. 1, we also release the zero homotopy condition and consider 
Hamiltonian circuits that can wrap along the torus and become non- 
homotopic to a point. 

Of course, if we consider nested circuits on ~" with free edges, all 
circuits become homotopic to zero (Fig. 21). Then the analysis is slightly 
simpler, and this nested (unrooted) walk system has been studied in detail 
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Fig. 21. Depiction of K =  7 encircling Hamiltonian circuits (heavy lines) on ,#g with free 
boundary conditions. In contrast  to Fig. 11, the walks can be nested inside one another. One 
can draw a spanning graph ff on the square lattice s B (centers of counterclockwise plaquettes; 
dots). The perimeters of each connected component  of if, including isolated points, give all 
Hamil tonian circuits. 

in ref. 25 and shown to be related to a Q-state Potts model on the square 
lattice. This also allows us to derive an infinite set of exact critical 
exponents for Manhat tan  HAWs, (25) which are those of the Potts model. 
A relation was then established to the O(n) model and to its critical 
exponents. This showed the universality of the Manhat tan  Hamiltonian 
exponents. These successive identities were established for a grand 
canonical set of nested circuits parametrized by a fugacity z for the fluc- 

tuating number  of circuits. One has then z = ~ = n. (25) 

A survey of this theory is given here, which opens a new direction for 
HAWs on the Manhat tan  lattice. We shall also consider in detail the torus 
case, where the nested walks can wrap along the torus generators. The 
exact continuum limit of the grand canonical partition function for 
Manhat tan  Hamiltonian circuits, nested, and with different winding num- 
bers, is given here. 

8.2 .  E q u i v a l e n c e  t o  t h e  P o t t s  M o d e l  

We thus consider nested HAWs on J r /wi th  free boundary conditions. 
A typical configuration is given in Fig. 21. 

Surprisingly, the grand canonical set of nested unrooted Hamiltonian 
circuits on J/r is then in one-to-one correspondence (z5) to a Potts model on 
the unoriented square lattice s whose number  of states Q gives the circuit 
fugacity v / Q  of the Hamiltonian system! 
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Consider indeed a set of K circuits filling the Manhattan lattice J /  
with (M = 2M) x (N : 2N) sites and free edges (Fig. 21). By drawing their 
skeletons, one finds a one-to-one correspondence to a spanning graph ~ on 
the square lattice 54 (here 54B), whose sites are the centers of plaquettes 
oriented in the same sense as the boundary of J///. The spanning graph fq 
has several connected components, the internal and external perimeters of 
which are precisely the Hamiltonian circuits. 

We introduce a grand canonical partition function for Hamiltonian 
(encircling) circuits 

Zn(z)= ~, zXN'H,K ( 8 . 1 )  
K>~I 

with a fugacity z, where Nh, K is the number of configurations of K circuits, 
the prime denoting the possibility of nested configurations. 

Note that here, in contrast to the partition function (1.17) for adjacent 
walks, one does not count the position of the origin of each circuit. For 
K =  1, we have obviously 

' = N o ( 8 . 2 )  N H ,  1 - -  H , I  

We can write (8.1) as 

ZH(z)= ~ z yp (8.1bis) 

where the sum is taken over all possible collections ~'n of Hamiltonian 
circuits on J / w i t h  ~Avp perimeter loops. 

Using the equivalence to spanning graphs ff on 54 (=5r we can 
write identically 

ZH(z) = ~ z:+ (8.3) 
spanning graphs 

~ e _ 9  o 

where A/~, is the number of perimeter lines of ft. On the open square lattice 
_9 ~ , one has obviously 

~<p = JVL + Yc (8.4) 

where ~ is the number of loops of graph ff and JV" c its number of connec- 
ted components. 

As noted by Kasteleyn, Hamiltonian walks on ~ '  correspond just to 
Euler walks on the diagonal oriented square lattice .{ (Fig. 22). So we can 
transform trivially the HAWs of Fig. 21 into an Euler set on ~ (Fig. 22). 
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, ! ; I I [ I : I 

Fig. 22. The polygon decomposition of the surrounding diagonal (unoriented) lattice .~. 
These polygons form disconnected Eulerian walks on ~. They surround a spanning graph fr 
(heavy lines) on square lattice s including isolated points. This graph is typical of the high- 
temperature expansion of the Potts model. 

This Euler set encircles the same former spanning graph on fq (bold 
lines in Fig. 22). This Euler set just builds a polygon decomposition/4~ of 
the surrounding lattice ~ of ~ ,  which is just the diagonal square lattice 
without its orientation. This is very reminiscent of the usual high-tem- 
perature expansion of the Potts model. (26'4~ The Potts model Hamiltonian 
is /3H= -/3 5Z<i,j> 6~ j ,  where (i, j> are nearest neighbors on lattice 5r 
and a i = l  ..... Q. The partition function is given by the Whitney 
polynomial (26,4~ 

Zpotts = Z e - ~ n =  Z W(fr 

= E ( e ~ -  1)W"Q Xc (8.5) 
f r  

where W(fr is the weight of a spanning graph fr on ~ made of Y8 bonds 
(heavy lines in Fig. 22) and Wc connected components. In terms of the 
number of loops ~ of fr we have (Euler's relation) 

(8.6) 

where the number of sites JV" s of ~ is 

J~s= M x N =  �88 M N  

In terms of the Xp polygons of the decomposition of the surrounding 
lattice .~, which are drawn inside each loop of ~r and around each cluster of 
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fr one has Ye = ~Q + Xc,  and therefore J f  c = �89 - ~ + Jffs). Hence we 
can rewrite (8.5) as 

Zeotts = Qxs/2 ~ [ ( e  ~ - 1) Q-I/z]wB QXp/2 
f# 

(8.7) 

The Q-state Potts model is critical (26'4~ for Q ~ [0, 4]. 
The critical point for Q ~ [ 0 , 4 ]  is known by 

(e ~ ' -  1) Q-I/2= 1.(26) Hence from (8.7) 
duality to be 

Z P o t t s  ~ -  Q~s/2 ~. Q~r (8.8) 
c r i t i c a l  c 5 

Comparison to the Hamiltonian grand canonical partition function (8.3) 
gives the basic identity (28) 

for 

ZH(Z) = Q-Ws/2Z Potts ( Q )  (8 .9)  
c r i t i c a l  

z = x / ~  (8.10) 

Hence, encircling or nested Hamiltonian circuits on the Manhattan lattice 
are exactly described by a standard critical Potts model on the unoriented 
square lattice. In particular, the Q ~ 0 limit of the Potts model, i.e., z ~ 0, 
will enable us to recover the true Hamiltonian limit of a finite number of 
walks filling the (infinite) Manhattan lattice. 

8.3. Application 

A first application of this identity concerns the evaluation of the num- 
ber Nh, x of nested K-circuits. Indeed, the Potts free energy at the critical 
point on, e.g., the square lattice 

f (Q,  flc)= lira 1 ~?~ ~ ~ssln ZcriticalPOttS (Q) (8.11) 

is exactly known (41) as a function of Q. The successive moments N~.K of 
(8.1) and (8.9) in the thermodynamic limit have been calculated from it. In 
particular, at small Q, one finds (zS) 

4 G  
f (Q '  f lc)=~ In Q + - - + n  ""  
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and Eqs. (8.1), (8.9), and (8.11) give 

4G 
lim 1--~- In U~,l = - -  (8.12) 

"A/'S ~ ~ ~ / ' S  

which is just Kasteleyn's celebrated result (0.3) (since ~ s  = �88 obtained 
here by a completely different method. 

8.4. Critical Exponents 

8.4.1.  Bulk  E x p o n e n t s .  Generalizing the above identity between 
Manhattan Hamiltonian and Potts partition functions, one can also 
consider correlation functions./25) We introduce for the Potts model the 
geometrical correlators ~25'42) 

1 
Gk(X-- Y) = ZPotts(Q-~-~) 2 W(~k) (8.13) 

~k 

where the sum is taken over all spanning graphs ~k of LP, which involve, 
among all the polygons of the surrounding lattice ,~ (at least), k polygons 
that join a neighborhood of X to one of Y (Fig. 23). At the Potts critical 
point, we argue as above that (25) 

1 
Gk(X-- Y) = Z tz) ~ zX~r (critical) (8.14) 

H t  ~ak 

i.e., Gk is the correlation function of k Hamiltonian circuits on J [ ,  immer- 
sed in a grand canonical sea with fugacity z = x / ~  (Fig. 23). This iden- 
tification is quite important, sifice one is able to calculate (22'24'42) the 
critical behavior of Gk from Coulomb gas methods (23"z4) in two dimensions. 
Indeed, Gk decays at the Potts critical point like 

Gk(X-- Y),'~ I X -  Y1- 2xk (critical) (8.15) 

where (24'25"42) x k is a critical exponent, 

where g is given by the Coulomb 
model~23, 24) 

1 X z Z = Q = 2 + 2 c o s ~  g, 

which depends only on k and Q as 

( 4 -  g)2 
8g 

(8.16) 

gas parametrization of the Potts 

g e  [2 ,4 ] ,  Q e  [0 ,4 ]  (8.17) 

For the true Hamiltonian problem z ---, 0, Q ---, 0, hence g = 2, and (25) 

x~ = �88 2 - 1) (8.18) 
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Fig. 23. 

ql 

q 

Ca) 

(b) 
(a) A graph aj~ contributing to the Potts correlation function G3(X-Y). (b) The 

corresponding graph on the Manhattan lattice. 

8.4.2. S u r f a c e  Exponents .  When the two points X and Y in 
(8.15) approach the boundary of the Manhattan lattice or of the Potts lat- 
tice 5e, new surface scaling dimensions appear. In terms of the Coulomb 
gas coupling constant g, they read, from the Potts model, (22'25) 

S _ _ I  2 x~-~gk + l k ( g -  4) (8.19) 

and for the Q-~ 0, z ~ 0 true Hamiltonian limit 

s =  �89 1) (8.20) Xk 

The values (8.18) and (8.20) are (universal) critical exponents for Manhat- 
tan Hamiltonian walks, characterizing the critical decay of correlations of 
bunches of k circuits. 

822/51/3-4-6 
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8.5. O(n) Model and Universality 

The above critical exponents have been derived for the Manhattan lat- 
tice; one could wonder if they are universal. First, since they are exponents 
of the Ports model, one suspects their universality. Indeed, one could con- 
sider, e.g., the Kagom6 or triangular lattices of Section 6 and generalize 
straightforwardly the equivalence to a Potts model on a corresponding 
lattice (actually, this works for any HAW on any covering lattice, as in 
Kasteleyn's original paper). Second, as discussed in detail in previous 
work,/2~ the exponents (8.16) and (8.19) are also critical exponents 
of the O(n) model, in its own low-temperature phase. Note that this phase is 
also known to be critical, but with different exponents from those of the 
critical point. ~24) 

The O(n) model ~s defined on the hexagonal lattice fit ~ by the partition 
function ~24) 

Zo~,)=II  ~ dS~ H ( l + / ~ s j . s t )  (8.21) 
i (j ,l) 

where i, j, l are sites on dt ~, (j, l) being nearest neighbors, and S is a n-com- 
ponent vector with ]SI 2= n. Then this partition function is that of a loop 
model, (24) 

Zoo,)= ~ flYBnYp (8.22) 
graphs 

where the graphs are formed by Ye self- and mutually avoiding rings on the 
honeycomb lattice, of total length JVB. One introduces correlation functions 
similar to (8.13) for the Potts model 

Go~n),L( X -  Y) = 1_~ ~, ~y,~L)n~e~L~ (8.23) 
Z ~  ~r 

where the graphs fqL on ~ are restricted to join by L lines a neighborhood 
of X to one of Y, possibly with additional loops (Fig. 24). These correlation 
functions decay at criticality like 

G o~,),c ~ I X -  YI - 2~ol,~,L (8.24) 

where the critical exponent XO<n),L reads, in terms of the standard Coulomb 
gas parametrization of the O(n) model, ~24'43) 

g' 1 
Xo .),L = L 2 - ( 1  - g , ) 2  (8.25) 
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Fig. 24. A graph contributing to the correlation function GO(n),3(X'-- Y) of the hexagonal 
O(n) model. In the Ports model it would correspond to G3/2(X-Y), i.e., a "half-integer 
number" of polygons. 

with (~4) 
n = - 2  cos rcg' (8.26) 

g ' e [ 1 , 2 ]  for f l = f l c = [ 2 + ( 2 _ n ) l / 2 ]  1/2 (criticalpoint) (8.26a) 

g' e [0, 1 ] for fi >/~c (low-temperature phase) (8.26b) 

The whole low-temperature phase of the O(n) model is indeed critical, (24) 
with exponents independent of fl >/~c. In terms of the high-temperature 
expansion (8.22) of the O(n) model, this corresponds to a condensation of 
the loops, (22) which densely fill the lattice. 

The surface exponents of the O(n) model read similarily (25'39) 

s = g,L 2 Xo(.),c �88 + � 8 9  1) (8.25a) 

Then the critical Potts and low-temperature O(n) models are equivalent 
for (25) 

n= xf lQ= z (8.27) 

Indeed, comparing (8.8) and (8.22) yields this obvious identification of the 
loop (or polygon) fugacities. Now (8.27) is satisfied for [see Eqs. (8.17), 
(8.26b)] 

g' = g/4 ~ [1/2, 1] (8.28) 
l ow-TO(n )  P o t t s  c r i t i ca l  

Then we check the identity of the critical exponents (8.16), (8.19) and 
(8.25), (8.25a): 

X p o t t s ,  k = XO(n) ,  L = 2k 
(8.29) 

S S 
X p o l t s ,  k ~--- X o ( n ) , L  = 2k 

i.e., for ~ = n = z, the correlations of k polygons in the Q-Ports critical 
model (Fig. 23) are the same as those of 2k lines in the low-temperature 
O(n) model (Fig. 24). This relation was also observed by Nienhuis for some 
exponents. (24) 
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8.6. Hami l tonian Condensat ion 

We thus see that nested Hamiltonian circuits on the Manhattan lattice, 
with a grand canonical fugacity z for the number of circuits, are in the 
same universality class as the critical Q = z 2 Potts model and as the O(n) 
model for n = z  in its low-temperature phase. This holds for z~ [0, 2], 
Q ~ [0, 4], n ~ [0, 2], where the models have a second-order phase trans- 
ition. For  z > 2 ,  the Potts transition becomes first order. (26'41) The 
Hamiltonian system is still equivalent to the Potts model at its first-order 
transition point. Hence, the correlation length staying finite, and one is led 
to conclude t25) that the critical nested Hamiltonian system with a walk 
fugacity z undergoes a phase transition when z = 2 toward a new phase 
where the correlations are screened and short range. This ressembles the 
case of adjacent Hamiltonian walks. However, as seen in Section 3, the 
system of adjacent walks becomes classical as soon as the fucacity m 2 is 
nonzero. We thus see an important difference between rooted adjacent and 
unrooted nested Hamiltonian walks on the Manhattan lattice. The 
adjacent walks [.partition function (1.17)] have only a critical point at zero 
fugacity, which corresponds to a few infinite walks filling the infinite lattice. 
Otherwise the correlations inside a thermodynamic melt of adjacent walks 
are exponentially screened. On the other hand, the allowance of nested 
Hamiltonian circuits makes it possible for the system to describe a finite 
continuous line z ~ [0, 2] of critical points. All correlation functions are 
algebraically decreasing with critical exponents xk, (~.16), and x s, (8.19), 
which vary continuously with the fugacity z = n = ~/Q, as the universality 
class. 

9. W I N D I N G  H A M I L T O N I A N  CIRCUITS ON THE TORUS 

9.1. General Considerat ions 

We shall now consider the case where multiple Hamiltonian circuits 
live on the Manhattan torus and can be nested inside each other and be 
nonhomotopic to zero. An example is given on Fig. 25 for the 4 x 6 
Manhattan torus filled by K = 3 Hamiltonian circuits, one being homotopic 
to zero, the other two wrapping once around the torus (compare to Fig. 5). 
Note that a Manhattan torus is necessarily an even-even lattice (as in Sec- 
tion 3). Then, when one follows one of the geodesics of the torus, one 
crosses necessarily an even number of Hamiltonian lines 4 (Fig. 25). Note 
then that this shows that a single closed HAW filling the lattice (as in 

4 Nonoriented plaquettes of J/have always two antiparallel occupied lines (P. W. Kasteleyn). 
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Fig. 25. (a) K =  3 HAWs on J l ,  only one being homotopic to zero. Two nonequivalent span- 
ning graphs on 2 '  A and ~ (thin and dotted lines) correspond to the HAWs. (b) In contrast, a 
well-defined 3-Euler walk on the diagonal square lattice ~ corresponds to the 3-HAW. 

Fig. 1) is necessarily homotopic to zero. Indeed, a single Ioop n o n -  

homotopic to zero on a torus crosses necessarily one of the geodesics an 
odd number of times. For  this reason the topology of the torus becomes 
relevant when there are at least two Hamiltonian circuits filling the lattice. 

Let us call NH, K (T) the total number of configurations of K 
Hamiltonian circuits filling the Manhattan torus, with no restriction on the 
topology. The grand canonical generating function on the torus T is then 
defined as in Section 8 [Eq. (8.1)] 

ZT(z) = ~ ZKNH, K(T) (9.1) 
K~>I 

One must note that this toroidal grand canonical partition function is 
no longer exactly that of a Potts model on the torus. Each HAW 



410 Dupl.antier and David 

configuration on the torus is now related to two nonequivalent spanning 
graphs on Y'a or Y'B (Fig. 25a). In contrast, there is still one polygon 
decomposition of the surrounding lattice ~ (Fig. 25b) corresponding to the 
HAWs. As before, this polygon decomposition is just the Eulerian set of 
circuits on diagonal square lattice ~, to which the Hamiltonian circuits are 
equivalent. 

Hence, we see that counting K-circuits on the Manhattan torus is 
equivalent to counting polygon decompositions of the torus ~. Thus, as in 
Eq. (8.3), 

Z ~ ( z )  = ~ ( Q )  - ~ QXp/2 (9.2) 
polygon 

decompositions of 

with 

Q1/2 = z (9.2bis) 

But the transformation to spanning graphs ~44~ on s A or 5a~ is ambiguous 
on the torus. For instance, in the case of Figs. 25a and 25b one has, respec- 
tively, the numbers of clusters, loops, and polygons 

A/~ = 2, X ~ = 0 ,  JVj,= K =  3 

Xg=l,  p=K=3 

None of these sets of numbers satisfies relation (8.4), which is necessary for 
identifying the Potts partition function (8.5) with the polygon represen- 
tation (8.7). The relation (8.4) was characteristic of the f ree  square lattice, 
where all Potts clusters and all Hamiltonian circuits were homotopic to 
zero. 

This only means that the identity of (9.1) with the Potts partition 
function is not entirely exact o/a the torus. These partition functions are 
actually related to each other, as we shall see below. Naturally, the critical 
properties of the model and its universality class do not depend on the 

s [(8.16), (8.19)] in Section 8 torus topology. The critical exponents xk, xk 

remain valid and are those of a critical Potts model with ~ = z and of an 
O(n) model in the critical ordered phase. Furthermore, it happens that the 
continuum limit of the partition function (9.1) can be found exactly, and is 
even simpler than that of the Potts model on the torus, {45) to which it is 
intimately related. Let us now evaluate it. 

We first remark that our Manhattan partition function (9.1) or 
polygon partition function (9.2) is in the continuum limit the partition 
function of (dense) self- and mutually avoiding loops on the torus (Fig. 26), 
with the particular condition that an even number of lines is crossed when 
following a geodesic on the torus. Hence, the Hamiltonian lines or 
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Fig, 26. The topology of the 3-walk of Fig. 25 in the cont inuum limit. 

polygons can be considered as lines of change of height in an SOS model 
on T. The SOS model is then always amenable (23'24) to a free field theory 
with discontinuities along the geodesics. r 

The SOS model is defined on the diagonal square lattice ~ (Fig. 25b) 
by orienting arbitrarily each closed line or polygon, which is then con- 
sidered as a wall between regions of constant height differing by a constant 
_+q~o .~23'24) In the SOS model a factor e i" (e i") is associated with each left 
(right) turn along a polygon. Along a polygon homotopic to zero, the total 
algebraic number of turns is always _ 4. For a polygon wrapping along the 
torus the algebraic sum is zero, since it makes a equal number of left and 
right turns on the surrounding lattice .~. Hence, summing over the orien- 
tations gives a factor 2 cos 4u for zero homotopy and 2 for nonzero 
homotopy. The SOS partition function then reads 

~fsos-  ~ (2cos 4u)~>2 ~p (9.3) 
polygons 

where JV'p (resp. JPp) is the number of polygons homotopic to 0 (resp. 
nonhomotopic to 0). 

This SOS sum is similar to the polygon partition function (9.2) for 

Z = Q I / 2  = 2 cos 4u (9.4) 

However, the polygons nonhomotopic to a point have a factor 2 instead of 
QI/2. It will thus be convenient to introduce a double sum, which weights 
differently zero and nonzero homotopic curves 

Lr(Q, ~)= ~ Q~,~p/2~p/2 (9.5) 
polygons 
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The simple SOS value (9.3) corresponds to the end of the Potts critical line 
~ =  4 for the nonzero homotopic circuits and to Q( ~[0, 4]) for the zero 
homotopic ones. Note also that by using the same correspondence between 
Eulerian polygons in the SOS model and Hamiltonian walks on the 
Manhattan lattice (Fig. 25), we have 

where 

~(Q, Q) =- Z~(z, ~) (9.6) 

Z~(z ,~ )=  ~ z'gZ~Nn, K,,t(T) (9.7) 
K>~0 
K'~>O 

is the grand canonical partition function of K +  K Hamiltonian circuits on 
the Manhattan torus, K being homotopic to a point, and K being not. It is 
worth noting that Nn,0.0 = 0 and Nn.o,1 = 0. 

9.2. Exact  C o n t i n u u m  P a r t i t i o n  Funct ions  

We use the formalism established in refs. 45, where critical partition 
functions on the 2D torus were expressed in terms of a free field with defect 
lines in the Coulomb gas formalism. (23'24) We start with Y'sos in (9.3), 
which is simpler. The torus polygon partition function (9.3) in the 
continuum limit can be represented as the continuum partition function of 
a system of double SOS wall lines (Fig. 26). In the continuum limit the 
standard Coulomb gas parametrization of the critical Potts model or the 
SOS model (for ~o o = n/2) is then, as in Section 8, (23'24) 

Q=2+2cosng/2, g~ [2 ,4]  (9.8) 

8u/~ = _+(2 - g/2) mod 4 (9.9) 

Then the SOS partition functions can be written in the continuum in terms 
of a two-dimensional free field with some defect lines on the torus. (45) In 
the continuum, each wall line corresponds to a line where the two-dimen- 
sional free field has discontinuities multiple of 2~. One considers the free 
field action 

g 
d = ~--~ f (V~o) 2 d2x (9.10) 

where g is given by (9.8), and whose periodic partition function is, on the 
torus, 

Zl(g)  = f [Dqo] e -~ (9.11) 
periodic 
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and after a proper renormalization (setting z = rR + i%) 

g 1/2 
Z~(g) - ry2q(q ) r/(c]) (9.12) 

Then one needs the free field with discontinuities along the geodesics (45) 

Zm, ,m(g  ) = fa [Dq~] e - ~  
qoh = = 2 ~ m '  

6 ~ 1 2  = 2 r c m  

where one imposes a discontinuity of 2~m' (2zm) on q9 along the geodesic 
col (co2). We evaluate Zm',m(g) as 

Z""'(g)= Zl(g) exp ( -rcgm'2 + m2(z~ + r2I)- (9.13) 

While Z 1 in (9.12) is modular invariant, Zm',m is not. A simple modular 
invariant is obtained by summing over m', m and defining a Coulombic 
partition function 

ZcEg, f] = f ~ Zm,,m(g) (9.14) 
m',m ~ fZ 

with the following properties(4S): 

Zc[g,f]=Zc , = Z c [ g f  2, 13 (9.15) 

After a Poisson transformation on variable m' one finds the Coulomb gas 
representation(4S) 

Zc[g,  1] = 1 ~ q(e/'~g+m~/g)2/4~] (e/~/g-mx/g)2/4 (9.16) 
r/r/e,m~Z 

which will be useful later. 
In the continuum limit, the SOS partition function (9.3), (9.4) is then 

given very simply in term of this free field with frustrations by the double 
sum over possible discontinuities {45) 

~eso s ~ Zc[g/4, 1] (9.16bis) 

This also gives the continuum limit of the polygon or Hamiltonian 
partition functions (9.5) and (9.7) for Q = z 2 parametrized by (9.8), and for 
the nonzero homotopy parameter fixed at 0 = 4, ~ = 2. 
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It remains to find the continuum limit of the general partition 
functions (9.6), (9.7), and (9.2). The correct weight is given to the polygons 
of HAWs not homotopic to a point by introducing in the Coulomb gas 
representation a supplementary electric charge e0, (45'46) which plays the 
same role as the electric charge _+ eo introduced at infinity in the cylinder 
limit. (36) It parametrizes Q as 

~1/2 = 2 cos bze 0 (9.17) 

In particular, the preceding case Q = 4 corresponds to eo = 0, while the 
symmetric model [Q = Q; (9.2)] is recovered for 

e 0 = +(2 - g/2) mod 4 (9.18) 

Then, a study of the topological properties of parallel frustration lines on 
the torus yields (45) the following continuum limit of ~e(Q, ~)) of (9.5) (this 
can be extracted from the discussion of the Potts model in ref. 45) 

~ ( Q ,  Q) --+ Z i g ,  eo] (9.19) 

with 

 mm(4) cos,, eomAm, ,920, 
m ' , m E Z  

where m' A m denotes the greatest common divisor of integers m'  and m. 
For  e0 = 0, one recovers (9.14) and (9.16bis). 

This continuum limit thus also gives the explicit answer to the 
Hamiltonian walk partition function on the Manhattan torus (9.7). We 
have the limit 

Z~i(z, ~) ~ Zig, e0] (9.21) 

with the parametrization 

z = 2 cos �89 - �89 

= 2 cos �89 

z e  [ - 2 ,  2], g~  [0, 4] 
(9.22) 

2~ [ - 2 , 2 ]  

One can finally note that this partition function is related to that of the 
critical Q-state Potts model on the torus with Q1/2=z. The complete 
expression of the latter is indeed (45) 

~e~otts(Q)--+ Z i g ,  %] + � 8 9  1)(Zc[g , 1] -z,:[g/4, 1]) (9.23) 
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where the two last terms involving the Coulombic partition function (9.14) 
reestablish the correct weights for Potts clusters on a torus, which are 
slightly different from those of the polygon decomposition. 

9.3.  O(n) M o d e l  

As we have seen, the critical Q-state Potts model is related to the O(n) 
model (8.21), (8.22) in its critical low-temperature phase for n = w/-Q. It is 
then instructive to compare their partition functions on the torus. On the 
periodic hexagonal lattice ~,~ we generalize the partition function (8.22) 
into(22, 45) 

~o6,),~= ~ fl~BnXP~ XP (9.24) 
graphs 

where the graphs are made of nonintersecting polygons on toroidal ~ .  
Here ~A/~ is the total number of bonds, and Yp (resp. Jt~p) is the total num- 
ber of polygons homotopic to zero (resp. nonhomotopic to zero). 

The critical point is r tic.= [2+(2-n)1/2]  -1/2, and the model is 
critical for n 6 [ - 2 , 2 ] ,  ~ E [ - 2 , 2 ] .  The difference from the Potts-like 
polygon model (9.5) lies in the fact that now the closed lines on the torus 
can cross the geodesics an odd number of times. For instance, single loops 
nonhomotopic to zero exist. The continuum limit of (9.22) is the modular 
invariant partition function (22'45) 

Y'o~n).~ ~ Z i g ' ,  e~] (9.25) 

with the parametrization 

n = - 2  cos zg', 

= 2 cos zte;, 

g ' ~ [ 1 , 2 ]  for /?=/~c 

g 'E [0, 1] for /?>/?c 

~ e [ - 2 , 2 ]  

(9.26) 

The pure O(n) model (8.22) where all loops on the torus are weighted 
equivalently is then obtained for 

e ; =  _+(g ' -  1)mod 2 

The O(n), Ft model in the low-temperature phase is related to the Potts-like 
model (9.5) or the Hamiltonian model (9.7) by the equations 

n = Q1/2 = z, fi = 0 I/2 = 2 (9.27) 
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which are satisfied for 

t _ _ 1  t 1 
go(,,) - ~gPotts, eo, o(n) = 3eo, potts 

Consider then the O(n), ~ partition function (9.25): 

1 
=  m,m( )cosE;eo,m m',] 

m ' , m ~ Z  

Isolating the even-even terms and using the obvious relation [see 
(9.12), (9.13)] 

Z2m, ~m( g/16 ) = �89 g/4 ) 

we find from (9.20) 

~o(,),~ ~ �89 eo] - Zodd[g, eo] 

where 

( m , m ' )  ~ Z 2 
m '  o r  m r 2 Z  

is the partition function of lines crossing one geodesic an odd number of 
times, while Z i g ,  eo] is precisely the continuum limit of the Potts-like 
~ ( Q ,  ~)) in (9.19) or of the Manhattan Z~(z ,  ~) in (9.21), made of double 
lines. 

9.4. The Q, t~-~ 0 Limit  

Let us consider what happens when we consider the true Hamiltonian 
limit where only a finite number of circuits fill the lattice: z = 0, 3 = 0, 
Q = 0 ,  ~)=0.  The corresponding values of the Coulomb gas coupling 
constant g and floating electric charge eo are, from (9.22), 

g = 2, eo = -t-1 mod 4 (9.30) 

The partition function (9.7) should be trivial, since by definition a set of 
Hamiltonian walks cannot be empty. For  eo= _1, the continuum limit 
(9.20) reads, by separating the congruence classes m A m ' = 0 m o d 2 ,  
m A m ' =  1 mod2,  
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2 [ g ,  1 ] = 2  ~ Zm, m(%) - Z 
m',m~2Z m',mEZ 

Z g = Z c I 4 ' 2 1 -  c I ~ , l  I 

(9.31) 

where we have used the definition (9.14) and the second duality identity in 
(9.15). We thus have, for g =  2, 

2E2, 13 = ZcE2, 1 ] -ZcE1 /2 ,  1] = 0  (9.32) 

with use of the first duality property (9.15). QED. The same result was 
obtained in ref. 22 when considering the n = ~ = 0 dense polymer limit of 
(9.25) for g ' =  1/2, e~ = 1/2: 

211/2, 1/2] = 0 (9.33) 

Hence, as expected, these partition functions are trivial. Their derivatives 
are not trivial, however. They count the number of configurations of closed 
Hamiltonian loops. In (9.19) and (9.21) the derivative ~?/~?z~Ofi?g counts 
the number of circuits homotopic to zero, while ~ ? / ~  ~?/Oeo selects the 
circuits nonhomotopic to zero. It is then very interesting to evaluate the 
first moments of the Hamiltonian generating function (9.21). 

9.4.1 M o m e n t s .  We use the definition (9.7) 

x UH,,,O= ~z ZH(z, ~)lz=e=o 

N ~  o l = - -  z ~ . ( z ,  e)lz=~=o 
' '  c~5 

(9.34) 

(9.35) 

which are, respectively, the numbers of single Hamiltonian circuits 
homotopic to zero or not homotopic to zero on the Manhattan torus. We 
calculate their continuum limits from (9.21) and (9.22), 

dga 
XH = dzz ~gg ZIg ,  %] (9.34bis) 

~ = de---2~ ~ ZIg, eo] (9.35bis) 
d~ ~?eo 
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From (9.22) we have 

2 ~ 
XH = ~ Z[g, t ]  

rt sin �89 - g/2) g=2  
(9.36) 

XH -- 1 ~ 2[2, eo] e0 = (9.37) 
sin �89 o 8e o 1 

9.4.2. Paths Homotopic  to Zero. Let us evaluate XH first. 
Using the identity (9.31), we have 

[: 11 ag2[g, 1] =Z'[g, 1 ] - I z '  
4 c , 

where Z',[g, 1]-(8/Sg)Zc[g, 1], which, according to (9.15), obeys 
Z'c [g, 1] = -g-2Z" [1/g, 1]. Hence we find for Hamiltonian walks (g = 2) 

X H = - - Z ;  ,1 (9.38) 
7% 

The derivative of the Coulombic partition function (9.14) for g =  �89 can be 
calculated exactly. (22) Due to (9.16), we have in general 

1 ( U  Zc[g, 1] =--= ~ (qq) (e2/g+m2g)/4 
~] e, meZ 

and 

Z ~ [ g , l ]  = 
In qq e 2 

/,if7 e,m~EZ ( 4  2 ~g2)(qq)(e2/g+m2g)/4(~) em/2 

For g = �89 it involves the double sum 

e,m~Z 

By use of the Jacobi identity (29) 

�89 ~ (--1)"(2n+ 1 ) q ( " ~ + " ) / 2 = p 3 ( q )  
n~Z 

we find 

S = �89 t/8 p3(q) p3(~]) = �89 q3(q) 
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Hence 

Z'c [• 1 ] = 1 In qq t/2(q) t/z(q) 
2 

We therefore find the "continuum number" of single Hamiltonian circuits 
homotopic to zero: 

Xn = 2 Im r r/2(q) q2(tt) (9.39) 

where we used q = e2"iL This is just the continuum version of the famous 
number N ~ (0.1), of Hamiltonian circuits on the Manhattan lattice. We 
have, according to Eq. (3.21), 

N H = N O = e G M N / n X H  
, 1 , 0  - -  H ,  1 (9.40) 

We note that the exact enumeration result (3.21) and the continuum value 
(9.39) obtained from conformal invariance theory are related by the 
ultraviolet lattice-dependent part e GMN/~, which is characteristic of the 
Manhattan lattice. This is in agreement with the discussion of Section 3.5. 
The modular invariant factor (9.39) is entirely universal and does not 
depend on the lattice. It does not even depend on the density of the Walks, 
and has been obtained also for dense polymers (22) (see next section). 

9.4.3. Paths Nonhomotopie to Zero. We evaluate ~ ' in  (9.37). 
By use of the definition (9.20) at values eo ___ 1 of the floating electric charge 

Oe---oZ[g' eo] = ~ Zm'm sin u(m Am')  
1 m ' , m E Z  

- 0  (9.41) 

since m/x m'E Z. Hence for a single path not homotopic to zero 

2 .  = 0 (9.42) 

This gives another proof of the already noted fact that there are no single 
Hamiltonian circuits nonhomotopic to zero on the Manhattan torus. Note 
that (9.41) holds for any g, hence any z, Q. This implies that one cannot fill 
the Manhattan torus better with a single Hamiltonian circuit non- 
homotopic to zero and a set of other circuits homotopic to zero, whatever 
the number of'circuits: 

NH, K, 1--0 for any K (9.43) 
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10. C O M P A R I S O N  TO DENSE POLYMERS 

10.1. True Hamiltonian Limit z - ~ 0  

On-the Manhattan lattice, true Hamiltonian walks in finite number 
are obtained in the zero-fugacity limit z ~ 0. According to Section 8, this 
limit corresponds to the Q ~ 0 critical Potts model or the O(n = 0) model 
for /7>/3c= ( 2 + x / 2 )  -1/2 on the hexagonal lattice. Hence the statistical 
systems made up of true Manhattan HAWs z = 0, Potts critical Q = 0, and 
O(n = 0) model,/3 >/3c, have identical cri t ical  properties.  

s governing the decay of As seen in (8.29), the critical exponents xk, xk 
the correlation (8.14) of k true Hamiltonian circuits on ~ ' ,  or the 
correlation (8.13) of the trees on LP, or k Potts polygons on ~, or finally 
the correlation (8.23) of L = 2k SAW lines of the n = 0 model all have the 
same exact values [Eqs. (8.18), (8.20)] 

x~ = (k  2 - 1)/4, xk  _ k ( k  - 1)/2 

This is not surprising. First, the Potts Q = 0 limit is known (26'44) to describe 
generally spanning trees, and HAWs on Manhattan are directly related to 
such trees. Second, the low-temperature phase of the n = 0  model is 
known (2w22) to describe dense po lymers ,  i.e., dense SAWs. 

10.2. Dense Polymers 

Dense polymers are polymers that are in finite number and fill a finite 
fraction of the available space. (2~22) In a lattice box of A sites, the total 
length of the polymers l defines an occupied fraction of sites (22) 

f =  I/A (10.1) 

and in the infinite-lattice limit, dense polymers are such that l ~  ~ ,  
A--, ~ ,  0 <f~< 1, f = 0  corresponds to usual dilute SAWs, while f =  1 
corresponds to Hamiltonian walks. The critical exponents do not 
depend (22'24) on the inverse t e m p e r a t u r e  /3>f lc=(2- ' } -N/ -2)  -1/2 of the 
O(n = 0) model in its low-temperature phase. Now, the actual value of the 
occupied fraction f is determined (22) by the value of the inverse tem- 
perature /7, with f = 0  for /3=/3c (dilute SAWs) and f - - * l  for /7--+oo 
(Hamiltonian limit). Hence the critical exponents for dense polymers, 
usually written as (2~22'25) (L = 2k) 

X~ = XO(n =0) ,L  ---- ( L 2  - -  4)/16 (10.2) 

X'L s =-- xSo(, = O),L = L (  L -- 2)/8 (10.3) 

are independent of/3 and thus of the density f of (10.1) for f > 0. 
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It was not entirely obvious, even if the limit/~ ~ oe should yield the 
Hamiltonian limit, that the critical exponents of Hamiltonian walks on a 
Manhattan oriented lattice are the same as those of dense polymers. 

This study (25) reported here shows that both the Hamiltonian con- 
straint and the Manhattan orientation are irrelevant for the infrared critical 
properties of (dense) walks. 

Quite remarkably, we have also obtained, besides the general 
equivalent of nested HAWs to Potts or O(n) models, a direct check in Sec- 
tion 7 of the validity of (10.2) and (10.3). Indeed, the surface exponent 
XlS=-1 /8  [Eq. (7.29)], obtained directly from the exact calculation of 
corner-corner walks (Fig. 18), is in perfect agreement with the first value 
for L = 1 of the surface exponents (10.3). 

Note also that on d/{ we had to consider the correlation of k circuits, 
which led to an even number of polymer lines L = 2k in (8.29). However, 
the odd values of L that actually occur for genuine dense polymers also 
may have a physical realization for Manhattan HAWs. The corner-to- 
corner walk of Section 7 illustrates L = 1. This can be generalized to any L 
odd on the odd-odd Jr by introducing (L - 1 )/2 circuits joining two 
corners. Their critical exponent will be xW= 2x s [Eq. (7.30)]. However, in 
the bulk on lattice Jr due to the Hamiltonian constraint and the Manhat- 
tan orientation, it is not geometrically possible to accommodate an odd 
number of lines, but this is a pure artifact of the constraints. The universal 
exponents (10.2), (10.3) are those of Hamiltonian walks on a wide class of 
(nonpathological) lattices and of dense polymers. 

10.3. Networks of Fixed Topology 

In Section 6 we found the configuration exponent 7o of a single 
closed HAW in any Manhattan-like domain N. This result is used here 
to conjecture new exact critical exponents for two-dimensional dense 
polymers. We shall deduce from it the unsuspected fact that the con- 
figuration 7 exp onents(4v) of dense polymers should depend, not only 
on the boundary conditions, as shown in ref. 22, but, in the case of free 
boundary conditions, also on the shape of the domain that the dense 
polymers fill. 

Let us consider a branched polymer ~47) fr made up of various polymer 
chains of the same size c[aemically tied together at some vertices (Fig. 27). 
When L chains are chemically bound together at a vertex, we call it an L- 
vertex, (47) L = 1 corresponding to free ends. The total length of the polymer 
is /. The topology of fq is fixed and described (partially) by the set {nL} 
of numbers of L-leg vertices in ft. Then the asymptotic number of dense 

822/51/3-4-7 
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( 
Fig. 27. A polymer network of fixed topology. 

configurations of the polymer c~ inside a given box ~ is expected to scale 
like 

c o ~  [#D(f)]t{exp[_N(f)ll/2]} 1% 1, l--* GO (10.4) 

where #D(f) and e -e(s) are nonuniversal bulk and perimeter "connectivity 
constants," which can be numerically shown (22) to depend on the occupied 
fraction (10.1). For periodic boundary conditions (torus), M -  0. The value 
of N' can also depend on the box shape. ~e is a critical exponent, which is 
supposed to depend only on the topology of ~ (20,47) o n  the boundary 
conditions (22) imposed on box ~ (periodic or free), and also on the 
geometrical shape of @ (for free boundary conditions). In ref. 22 it is 
argued that, whereas ~e governing the absolute number of configurations 
co~r depends on the boundaries, a universal critical behavior is expected for 
the relative number (n~/coo, where COo is the configuration number of a 
single, dense closed walk of length/. 

Then (20, 22) 

co~/coo ~ l,g ( l - ,  oo) (lo.5) 

with a universal dense critical exponent (2~ 

D _  ~ -  ~ nL(2-L)(L+18)/32 (10.6) 
L ~ I  

y~ is thus believed to be independent of boundary conditions and, a 
fortiori, of the box shape. It depends only on the topology (47) {nL} of the 
network fr 
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Now, the number of configurations ~Oo of a dense single loop itself 
scales like, as in (10.4), 

~ o ~  [#D( f ) ]~{exp[- -~( f ) l l /2]}  I%-1, l ~  oo (10.7) 

where 7o depends a priori on boundary conditions and on shape. The 
results (3.21) and (4.24) found for a single Hamiltonian circuit on the 
rectangular Manhattan lattice are in agreement with this asymptotic form. 
We deduce the respective value of the exponent 7o: 

~o,v = 1 (periodic Manhattan torus) 
(10.8) 

7o, v = 3/4 (free Manhattan rectangle) 

For a free Manhattan domain ~ of arbitrary shape, we found in Sec- 
tion 6.5 

~o,v-  1 = -~(0)  (10.9) 

where ~(0) is given by (6.13). It is then very tempting to conjecture that 
these values 'of ~o derived for Manhattan HAWs are actually universal 
within the class of dense polymers. (22) This conjecture is appealing since we 
have seen that ~(0) is a purely geometrical object, independent of the 
regularization of the continuum limit. If we thus assume that the values 
(10.8) and (10.9) also apply to a dense polymer loop, then, from (10.5) and 
(10.7), the number of configurations co~ itself of the dense branched 
network fq scales like 

~o~ ~ [ -#D( / ) ] ' {exp[ -~ ( f ) l l / 2 ]}  l TM 1 

with 

where [Eq. (6.13)] 

~ , p  = y~ + 1 (torus) 

~ , v  = 7~ - ~(0) (free BC) 
(1O.lO) 

r (10.11) 

This conjecture, obtained from the Dirichlet spectral theory (Section 6.5), 
completes the study of ref. 22 on dense polymers. The "universal" critical 
exponent ~ , r  should therefore depend both on the network topology 
through the exact expression (10.6) of y o and on the boundary's shape 
through ~(0) above. Numerical checks would be most welcome to test this 
rather intricate conjecture! 
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11. C O N C L U S I O N  

In summary, we have shown how the Hamiltonian problem on the 
special Manhattan lattice Jg is in fact deeply related to known statistical 
models in two dimensions. First, if one considers only multiply connected 
and rooted adjacent walks or circuits on Jg with a fugacity m 2, then the 
system is completely equivalent to multiply connected spanning trees and 
the correlation functions are those of a massive free field theory. The 
Hamiltonian system is then only critical in the zero-mass limit m = 0, 
corresponding to a vanishing concentration of walks. Second, when one 
allows the multipl_e (unrooted) closed walks to encircle one another, the 
fugacity being ~/Q, one obtains a complete equivalence to a Q-state Potts 
model at its critical point. So the system remains critical when unrooted 
walks can encircle one another, for any fugacity (v/Q~<2), in contrast to 
the massive free field theory of rooted walks constrained to be adjacent. 
The limit Q--* 0 is known to describe spanning trees with vanishing con- 
centrations, and recovers the m --, 0 limit of the field theory. However, the 
two theories have allowed us to calculate different geometrical correlation 
functions in both (rooted walks in the free field, bunches of circuits in the 
Potts model). 

These two rather orthogonal directions suggest that it should be 
possible to combine them into a unified description by allowing the tem- 
perature of the Potts model to vary from its critical value, which introduces 
the required mass scale in the theory. 

It is also to be noted that this mapping of Hamiltonian Manhattan 
walks onto quite classic statistical systems shows that they are much more 
universal than originally thought. They also furnish an interesting 
laboratory to test some general results of critical phenomena and confor- 
mal invariance theories. As we have shown in detail here, many properties 
can be determined exactly, essentially by combinatorial or determinant 
methods, such as rooted walk correlation functions and a nontrivial surface 
exponent of the O(n) model, n ~ 0. This suggests that this model could be 
exactly solvable. 

A PPE NDIXA.  ASYMPTOTIC N U M B E R S  OF WALKS 

We want to evaluate the basic expressions in (3.12)-(3.14), 

D =  1-I 2k, S_l  = Z (2k) ', S -2  = Z (2k) -2 
k # O  k ~ O  k r  

where 2 k is the free field eigenvalue on the torus 
m n 

2 k = 4 - 2 cos 2n _ ~ -  2 cos 2n ~ ,  0 ~< m ~< M -  1, 

(A.1) 

O < n < N - 1  
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1. The product D is evaluated via its logarithm 

lnO ,n(4 
O<~m<~M 1 M 
O <~ n <~ N 1 
(m,n) v~ (0,0) 

The zero mode can be reinserted by the regularization 

(A.2) 

In D = lim [A(e) - In e] 
, ~ 0  

= 

O<~m<~M--1 
O<~n<~N--1 

In(4 + e - 2 c  m - 2c,) 

where the 
w h e r e  c m = cos( 27zm/ M ), c. = cos( 2rm/ N). 

We set 

2 ch t ,  = 4 + e - 2c, 

(A.3) 

sum is now as in (A.2), but with m =0 ,  n = 0  included; and 

(t, > 0) (A.4) 

and use the Fourier transform 

e - l k l t  

l n [ 2 ( c h t - c o s O ) ] = t -  ~ -~1 
k~Z* 

- -  e ek~ ( A . 5 )  

f o r  

Hence we have 

0 = Om = 2rcm/M (A.6) 

A(e)= Y', ( t , -  ~ e Fkl" ) 
O<~m<~M--I k~Z* T k~ e2rcikm/M 

O<~n<~N--1 

O<~n<~N--1 keN* 

= ~ [Mt .+21n(1-e  M,.)] 
O<~n<~N-- I 

When e ---r 0, the value of t o reads, from (A.4), 

to = el/2[1 + O(~)] 

Hence (A.3) and (A.7) give 

(A.7) 

(A.8) 

l n D = 2 1 n M +  Z [Mt ,+21n(1-e  M,,)] (A.9) 
l ~ n ~ N - - 1  
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where now tn corresponds to e = 0 in (A.4). Note that this value is exact 
and includes no asymptotic evaluation. The latter is performed by using 
Euler-MacLaurin formula 

f (n )=  fUf(n)  d n - 2  [f(O) + f (N)  ] 
l < ~ n < ~ N  1 

+ ~ (_ l )p_  , B2p [f(2p ~)(N)_f(2p ~)(0)] (A.10) 
~ ,  (2p)! 

where the B2p are Bernouilli numbers 

B2=1/6, B4= -1 /30  .... 

We set in the continuum limit 

and 

0 = 2rm/NE [0, 2n] 

ch t(O) + cos 0 = 2, t = 0 - 03/12 + 0(05), 0 ~ 0  

(A.11) 

(A.12) 

The period is ~. One has also 

sh(t/2) = sin(0/2) 

dO 1 2 ~  O ( 1 )  
t n=Nfo t (O) - -~+~-~[ t ' (2~- ) - - t ' (O+)]+  -~5 

l < ~ n < ~ N - - 1  

The derivative reads 
t'(O) = (sin 0)/(sh t) 

(A.13) 

(A.14) 

(A.15) 

Hence t'(0 + ) = - t ' ( 2 n -  ) = 1, and 

z 
l < ~ n < ~ N - -  I 

where 

f t( O ) - -  4 ~/2 I= -~ Jo dxln[sinx + (l +sin2 x)t/2] 

4G 
= - - =  1.166243616... 

(A.16) 

(A.17) 

where G is Catalan's constant 

1 1 2 n +  1 
G = l - - ~ + ~ 5 +  . . . .  8 ~ ( 4 n + l ) 2 ( 4 n + 3 ) 2  

n~>0 
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The continuum limit of the last sum in (A.9) is obtained simply by 
replacing t, by its equivalent near the origin 

, [(;)31 t ,= 2rc-~ + O (A.18) 

and this gives, near the two ends of the Brillouin zone, 

ln(1--e-M'")--*21n f i  (l--q") (A.19) 
l ~ n ~ N - - 1  n = l  

where 

q = e 2rcM/N (A.20) 

Collecting the results (A.16) and (A.19) into (A.9) gives finally (3.18), 

ln D =  4Grc MN+ In MN+41n[P(q)ql/24 ~ 1 / 4 ]  _~_ O (.(Ml)1/2) (A.21) 

where P(q)=H.~, (1--q') ,  ~=M/N. QED 

2. The second sum S_1 in (A.1) is evaluated is a similar way. We 
write 

S_1= lim ~o l ( e ) - ! ]  (A.22a) 
~ 0  L - 

where 

a_l(e) = ~ (4 + e - 2Cm - -  2C.)-1 (A.22b) 
O ~ m ~ M  1 
O < n ~ N  1 

We use the same parametrization as in (A.4) and 

1 (A.23) 2 ( c h t - c o s 0 ) =  ~ ei~~ ~ z  2 sh t 

Hence 

O ~ n ~ N  1 0 < ~ m < . M - - 1  2sh t ,  
N 1 e IklMtn N - - 1  

= M  E E-5-----7 - M  E f ( t . )  
,=0 k~z ~ ,.sh n = 0  

(A.24) 
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with 
1 1 + e  - M t "  

f ( t , ) - 2  sh t-~ 1 - e  -Mr" (A.25) 

The diverging contribution coming from n = 0 for e ~ 0 is obtained after a 
careful series expansion 

1 M 2 - 1  
f ( t o ) = - + - - +  ... 

12 

Hence, from (A.22), 

m 2 _ l  
S-1 = 12 + 2M ~ f ( t , )  (A.26) 

l<~n<~(N 1 ) / 2  

where now t, is obtained from (A.4) for e = 0. Since t, is symmetric with 
respect to N/2, the Brillouin zone has been brought back to the origin, 
assuming, e.g., N to be odd. The converging rates suggest the splitting 

1 1 e - -  Mtn 
f u n )  = 2 sh t, + sh t, 1 - e -Mtn (A.27) 

The first sum in (A.26) is then evaluated by the Euler-MacLaurin 
equation, the second converges very rapidly, and the expansion (A.18) of t, 
around the origin suffices. We set asymptotically 

2 ~ f ( t . )~0 -1  +0-2+0"3 
l <~n<~(N--1)/2 

2 sift .  2--~-n ~-2-~1n2---- ~ 0 - 1  ~ 

l <~n<~(N--1)/2 

0" 2 = y,__ - -  ..]- . . .  

l<~n<~(N--1)/2 

N 2e-2"~" 
0-3 L 2 u n l - e  2.~. 

l<~n<~(N--l)/2 

1 N ~, q" _ N 
~ - ~ 2  L - q "  [ - 2  In P(q)]  

, = i n  1 2~ 

Collecting all these value, we find for S , of (A.26) 

S_1 4re ~ MN+21n---4tn[P(q)qm4~l/4]+O~ (M~V) 1/~ 

(A.28) 

which is Eq. (3.22). QED 
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3. The last sum S 2 in (A.1) is evaluated in the same way: 

where now 

O ~ m < ~ M  1 
O < ~ n < . N  1 

We use the Fourier transform 

(4 + ~ - 2c,~ - 2c,) -2 

(A.29) 

(A.30) 

_i~o e ikj, (coth t +  [k]) ( c h t - c o s 0 ) - 2 =  Z e ~-~ 
k E Z  

(A.31) 

which can be obtained by differentiating (A.23) with respect to t. Then a 2 
is reduced to the single sum, after some calculations, 

[- h M t ,  e -- m t n  1 
M [cot - - ~ - c o t h t . + Z M ( l _ ~ - ~ - ~ - - - ~ t . ) 2 j  a -:(e)= ~ 4(sh t.) 2 

O<~n<~N 1 

- ~ g(t .)  (A.32) 

The divergence in the n = 0  term for e -+0  is extracted after some 
calculations: 

[ 1 ]  M4 M2 11 
lim g ( t o ) - - ~  =24. -u  72 6! (A.33) 
~ 0  

Hence we find the exact sum 

M 4 M 2 11 
S 2 =24--C-_-~+ 7---2-- 6--~ -+  ~ g(t ,)  (A.341 

l < ~ n < . N  1 

where now tn > 0 is the solution of 

ch t,  + cos(27rn/N) = 2 (A.35) 

Until now there has been no approximation. 
To take the N ~  ~ limit, we split the sum in (A.34) into (using the 

symmetry of tn, and assuming N to be odd) 

M [1 e Mr. e--Mr.  

Eg( tn)  = E s h 2 t n l ~ C ~ 1 7 6  Mt.)~] 
n l<~n<~(N i ) /2 

= al + a2 + a3 (A.36) 
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The first sum is evaluated by the Euler-MacLaurin formula, after subtrac- 
tion of the diverging terms near the origin: 

a~ = ~r'l+ a~' 

 Fco h,  1 
a l -  ~ 2 / ~-~ t~ ~ 42~n l<~n~(N--1)/2 

~ M N [ "  [cotht(0, 1 1 ]  
47r Jo dO L sh2 t(O) 03 (A.37) 

M N  
= I' 

47r 
M [ (  N ~3 +I.__N_ N ] 

or; = Z -~ l_\2--~nnrcnJ 4 2~znJ l <~n<~(N--1)/2 
MN3 [- 3 2 3 M N  / N \ 

~ 2(---~)~ L{( ) - ~ J  + 1 - ~ / l n ~ + , )  (A.38) 

The other two sums in (A.36) converge very rapidly. So the expansion 
(A.18) of t. near n=0  is sufficient, and the continuum limit reads 
immediately 

M N  3 1 q" M N  ~ 1 qn M 2 q,, 
~r 2 '--~ (--~ ) 3 ~ n 31~ q. F --~-~- ~ n l _ q,, + --~ f (l..~-qn)2 n=l n=l n=l 

q,, 
( M N )  2 f 1 q" 1 M2 f __qn)2 

a3---~\2rc/ .=l n2 (1-- q") 2 6 n=l(1 

+ 1 2 r t M 3  ~o qn(l +q,, ) 
- ~  n~= ~ (1--qn) 3 

Collecting Eqs. (A.34)-(A.39) gives finally 

M 4 M N 3 [  ---~] 
S _ 2 - 2 4 . 4 5  F2(---~)3 if(3) 2 

M N  3 1 q" 

q - ~  n~>~l n 3 1--qn 

(MN'] 2 1 q" M N  f 
+ \  2~z J .~1n2 ( l - q " )  2 I---~-- 

) q" 
+1--~\  ~ + 7  +-~-+--~--~ = , n l - - q "  

1 M 3 o~ q ' ( l + q " )  

+i-227r-N-Z= (l--q") 3 

(A.39) 

| 0o qn 

M2nZ l,--qn 2 
(A.40) 
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Terms are reordered for getting a modular invariant form 

n = l  n = l  

+l__~ln (MN)I/2~ 1/2 _(_~)3._F__~ +_._~_g 

q~ MN 1 q" 1 MN~ ~ _2q,)2 + 2n~ 2 q"( l+q")  
+--~--~ n 1 - q "  12 (1 n (1 __qn)3 

n = l  n = l  n = l  

We can use the identities 

(A.41) 

~ 1  q ~ _  
n~, n l - q n  - l n P ( q )  

q t t  m E --qn)2  qP'(q) 
.~>1 (1 P(q) 

(A.42) 

and t/(q)= q,/24p(q) to finally write the asymptotic evaluation of S_2 at 
orders d 2 and ~4 (with ~r = MN) as 

S_2 111 l l 
~ + ~ n - ~  ~ ( 3 ) +  • n31---q, + n 2 ( l _ ~ , )  ~ 

n ~ > ,  n ~ ,  

+ l T  ln d,/2t/ 2(q)~ ,/2 +~_~1__~n(Zn~)_(_~5~)3+~_~ ~ 

d ~ P'(q) , ~ qn(1 +q") 
T~gq p - - ~ +  2n~ 2 ~ n ( l _ q , )  3 (A.43) 

n ~ > l  

The continuum limit is given by the dominant term ~(area) 2, which is 
modular invariant and recovers (3.24). QED 

Note that the continuum limits obtained in this Appendix, namely 
In D [Eq. (A.21)], S , [Eq. (A.28)], and S_2 [Eq. (A.41)], have also been 
obtained independently in this paper as moments of the FSS continuum 
massive free-field partition function on the torus [Eq. (3.70)] in the zero- 
mass limit [see Eqs. (3.72) and (3.73)]. Hence the two limits (FSS 
continuum, zero mass) commute, as expected. 
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A P P E N D I X  B. D I R I C H L E T - N E U M A N N  D U A L I T Y  

To prove the duality equation (5.14), we evaluate first the Neumann 
Gaussian integral J (5.3), (5.4) on graph G. We consider the normalized 
eigenmodes of C 

cx.=,~.x., n = 0  ..... N o ( G ) -  1 

the zero mode being 

20=0, 
1 

Xo(i) - [No(G)]1~2 Vie G 

Any ~o can be expanded onto the Xn, 

N O --  1 ao 

and we rewrite J as 

(B.1) 

f+~ NO~G~--I ( 1  2 ) 
J =  1-[ da, da oexp - -  ~ an2 . 6(~p(0)) 

oo n = l  2n~o 

= (2~z)Eu0~)-1]/2 i~ n N~/2(G) 
\ n v ~ 0  / 

where the last factor comes from the projection (B.1) of r onto the zero 
mode. 

Hence 

j = (2~)[N0,6) ,]/2 (deft C'] 1/2 

\No(G)J (B.2) 

To transform the integral J in (5.3) into that of a Dirichlet problem, we 
introduce the NI(G) variables [N~(G) is the number of bonds or links 
of G]  

q~,y = q~(i) - qg(j) 

associated with links of the dual lattice G* of G (see Fig. 12). Around each 
elementary plaquette P of G we have obviously Z <i, j)~ P q~ij = 0 and this is 
enforced by introducing plaquette Lagrange multipliers 0e  in (5.3), which 
we rewrite as 

J =  1-I a~pr e x p - ~ Z ~ p ~ + i Z 0 p  E q% (B.3) 
( i , j ) E G *  P G* P ( i , j ) ~ P  



Multiple Hamiltonian Walks on Manhattan Lattice 433 

Each link (i, j )  belongs to two plaquettes with alternate directions, so we 
have by integrating on the q)~ 

gld~P2~ I 1 ( ~  ] J=(ZTr)Eu~(6)-11/2~ 1 ~  exp ~ (~e--~be,) 2 (B.4) 
(P ,P ' )  

where the sum runs onto adjacent plaquetes (P, P ' ) ,  i.e., nearest neighbor 
variables ~e, qSp, on the dual lattice, and where the superscript (0) means 
that the sum must be extended to external sites of the dual lattice G* that 
are not centers of plaquettes, with a zero value of Oe there (Fig. 12). So 
(B.4) is just associated with the combinatoric Laplacian with Dirichlet 
boundary conditions on the dual lattice G* [see (5.7)]. Hence, by 
integration, 

J = (27~) [NI(G)- 13/2(2r~) N2(G)/2 det-l/2( -- A)I G*,Dirichlet (B.5) 

where Nz(G ) is the number of plaquettes or loops of G, i.e., the number of 
internal sites of G*. Using the Euler relation (2.1) and comparing (B.2) and 
(B.5) gives the expected result 

det' Ca --= det( -A)I  o,N . . . . . .  = No(G) det( - -  Z] ) l  G* ,Di r i ch le t  

of which (5.13) is a particular case on the quasi-self-dual rectangular 
lattice. 
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